Holger Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777605/publications.pdf Version: 2024-02-01

		38742	48315
351	11,323	50	88
papers	citations	h-index	g-index
201	201	201	0505
391	391	391	9585
all docs	docs citations	times ranked	citing authors

HOLCED STADE

#	Article	IF	CITATIONS
1	Repurposing of 8â€Hydroxyquinolineâ€Based Butyrylcholinesterase and Cathepsin B Ligands as Potent Nonpeptidic Deoxyribonuclease I Inhibitors. ChemMedChem, 2022, 17, .	3.2	4
2	BOPPY-based novel fluorescent dopamine D2 and D3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128573.	2.2	6
3	Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment. European Journal of Medicinal Chemistry, 2022, 232, 114193.	5.5	5
4	Design and Synthesis of Arylpiperazine Serotonergic/Dopaminergic Ligands with Neuroprotective Properties. Molecules, 2022, 27, 1297.	3.8	1
5	A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology. International Journal of Cosmetic Science, 2022, 44, 216-231.	2.6	2
6	Increased Remyelination and Proregenerative Microglia Under Siponimod Therapy in Mechanistic Models. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	23
7	Structural and Molecular Insight into Piperazine and Piperidine Derivatives as Histamine H ₃ and Sigma-1 Receptor Antagonists with Promising Antinociceptive Properties. ACS Chemical Neuroscience, 2022, 13, 1-15.	3.5	17
8	Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Research, 2022, 82, 1617-1632.	0.9	11
9	Ceramide synthase 6 impacts T-cell allogeneic response and graft-versus-host disease through regulating N-RAS/ERK pathway. Leukemia, 2022, 36, 1907-1915.	7.2	7
10	Substituted Purines as High-Affinity Histamine H3 Receptor Ligands. Pharmaceuticals, 2022, 15, 573.	3.8	3
11	Evaluation of chromane derivatives: Promising privileged scaffolds for lead discovery within Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2022, 68, 116807.	3.0	5
12	The Novel Pimavanserin Derivative ST-2300 with Histamine H3 Receptor Affinity Shows Reduced 5-HT2A Binding, but Maintains Antidepressant- and Anxiolytic-like Properties in Mice. Biomolecules, 2022, 12, 683.	4.0	2
13	OLHA (N-oleoylhistamine) modulates activity of mouse brain histaminergic neurons. Neuropharmacology, 2022, 215, 109167.	4.1	0
14	Eosinophils adhesion assay as a tool for phenotypic drug screening - The pharmacology of 1,3,5 – Triazine and 1H-indole like derivatives against the human histamine H4 receptor. European Journal of Pharmacology, 2021, 890, 173611.	3.5	5
15	Structural modifications in the distal, regulatory region of histamine H3 receptor antagonists leading to the identification of a potent anti-obesity agent. European Journal of Medicinal Chemistry, 2021, 213, 113041.	5.5	10
16	Synthesis, in silico, and in vitro studies of novel dopamine D 2 and D 3 receptor ligands. Archiv Der Pharmazie, 2021, 354, 2000486.	4.1	7
17	The Multi-Targeting Ligand ST-2223 with Histamine H3 Receptor and Dopamine D2/D3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. International Journal of Molecular Scien <u>ces, 2021, 22, 1947.</u>	4.1	14
18	Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology, 2021, 186, 108464.	4.1	13

#	Article	IF	CITATIONS
19	Demonstrating Ligandability of the LC3A and LC3B Adapter Interface. Journal of Medicinal Chemistry, 2021, 64, 3720-3746.	6.4	22
20	Discovery of Potential, Dual-Active Histamine H3 Receptor Ligands with Combined Antioxidant Properties. Molecules, 2021, 26, 2300.	3.8	3
21	AGMO Inhibitor Reduces 3T3-L1 Adipogenesis. Cells, 2021, 10, 1081.	4.1	5
22	Adenosine A _{2A} R/A ₁ R Antagonists Enabling Additional H ₃ R Antagonism for the Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2021, 64, 8246-8262.	6.4	6
23	Guanidine Derivatives: How Simple Structural Modification of Histamine H ₃ R Antagonists Has Led to the Discovery of Potent Muscarinic M ₂ R/M ₄ R Antagonists. ACS Chemical Neuroscience, 2021, 12, 2503-2519.	3.5	7
24	The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions. Biomedicine and Pharmacotherapy, 2021, 138, 111517.	5.6	12
25	Biphenylalkoxyamine Derivatives–Histamine H3 Receptor Ligands with Butyrylcholinesterase Inhibitory Activity. Molecules, 2021, 26, 3580.	3.8	3
26	Ugi Reaction Synthesis of Oxindole–Lactam Hybrids as Selective Butyrylcholinesterase Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1718-1725.	2.8	13
27	TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules, 2021, 11, 1166.	4.0	24
28	ST-2191, an Anellated Bismorpholino Derivative of Oxy-Fingolimod, Shows Selective S1P1 Agonist and Functional Antagonist Potency In Vitro and In Vivo. Molecules, 2021, 26, 5134.	3.8	4
29	Histamine receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
30	Cyanobiphenyls: Novel H3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer's disease. Bioorganic Chemistry, 2021, 114, 105129.	4.1	8
31	Histamine H3 receptor antagonists with peptidomimetic (keto)piperazine structures to inhibit AÎ ² oligomerisation. Bioorganic and Medicinal Chemistry, 2021, 50, 116462.	3.0	4
32	Guided rational design with scaffold hopping leading to novel histamine H3 receptor ligands. Bioorganic Chemistry, 2021, 117, 105411.	4.1	2
33	Chemical Probes for Histamine Receptor Subtypes. Current Topics in Behavioral Neurosciences, 2021, , 29-76.	1.7	1
34	In silico and in vitro studies of two nonâ€imidazole multiple targeting agents at histamine H ₃ receptors and cholinesterase enzymes. Chemical Biology and Drug Design, 2020, 95, 279-290.	3.2	13
35	Search for new multi-target compounds against Alzheimer's disease among histamine H3 receptor ligands. European Journal of Medicinal Chemistry, 2020, 185, 111785.	5.5	27
36	Profiling of LINS01 compounds at human dopamine D2 and D3 receptors. Journal of Chemical Sciences, 2020, 132, 1.	1,5	5

#	Article	IF	CITATIONS
37	4-(4-Chlorophenyl)thiazol-2-amines as pioneers of potential neurodegenerative therapeutics with anti-inflammatory properties based on dual DNase I and 5-LO inhibition. Bioorganic Chemistry, 2020, 95, 103528.	4.1	13
38	N-Substituted piperazine derivatives as potential multitarget agents acting on histamine H3 receptor and cancer resistance proteins. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127522.	2.2	9
39	Epigenetics meets GPCR: inhibition of histone H3 methyltransferase (G9a) and histamine H3 receptor for Prader–Willi Syndrome. Scientific Reports, 2020, 10, 13558.	3.3	6
40	Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules, 2020, 10, 1251.	4.0	22
41	Morpholino Analogues of Fingolimod as Novel and Selective S1P1 Ligands with In Vivo Efficacy in a Mouse Model of Experimental Antigen-Induced Encephalomyelitis. International Journal of Molecular Sciences, 2020, 21, 6463.	4.1	12
42	Pollution Particle Analysis from Idiopathic Pulmonary Fibrosis Lungs and Their Effect on Macrophages. , 2020, , .		0
43	Angiogenesis Patterns in Interstitial Lung Disease. , 2020, , .		0
44	Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. International Journal of Molecular Sciences, 2020, 21, 3411.	4.1	10
45	The Dual-Active Histamine H3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. International Journal of Molecular Sciences, 2020, 21, 3996.	4.1	25
46	The chemical probe – scopes, limitations and challenges. Expert Opinion on Drug Discovery, 2020, 15, 1365-1367.	5.0	5
47	Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Al²1-42 aggregation. Bioorganic Chemistry, 2020, 98, 103722.	4.1	31
48	<p>Reversible Small Molecule Inhibitors of MAO A and MAO B with Anilide Motifs</p> . Drug Design, Development and Therapy, 2020, Volume 14, 371-393.	4.3	21
49	Novel pyrrolidinone derivative lacks claimed histamine H3 receptor stimulation in receptor binding and functional studies. European Journal of Medicinal Chemistry, 2020, 191, 112150.	5.5	1
50	Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Current Pharmaceutical Design, 2020, 26, 1693-1711.	1.9	30
51	Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. Journal of Medicinal Chemistry, 2019, 62, 420-444.	6.4	314
52	The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chemico-Biological Interactions, 2019, 312, 108775.	4.0	44
53	The Search for Histamine H 4 Receptor Ligands with Anticancer Activity among Novel (Thio)urea Derivatives. ChemistrySelect, 2019, 4, 10943-10952.	1.5	4
54	0771 Pitolisant Is A Safe And Effective Treatment For Children With Prader-willi Syndrome (pws). Sleep, 2019, 42, A309-A310.	1.1	5

#	Article	IF	CITATIONS
55	Talipexole variations as novel bitopic dopamine D2 and D3 receptor ligands. MedChemComm, 2019, 10, 1926-1929.	3.4	5
56	Cognitive Improvements in Children with Prader-Willi Syndrome Following Pitolisant Treatment—Patient Reports. Journal of Pediatric Pharmacology and Therapeutics, 2019, 24, 166-171.	0.5	24
57	Prior Activation of 5-HT7 Receptors Modulates the Conditioned Place Preference With Methylphenidate. Frontiers in Behavioral Neuroscience, 2019, 13, 208.	2.0	3
58	Small-molecule inhibitors of nisin resistance protein NSR from the human pathogen Streptococcus agalactiae. Bioorganic and Medicinal Chemistry, 2019, 27, 115079.	3.0	4
59	Rasagiline derivatives combined with histamine H3 receptor properties. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126612.	2.2	10
60	Ligand binding kinetics at histamine H3 receptors by fluorescence-polarization with real-time monitoring. European Journal of Pharmacology, 2019, 848, 112-120.	3.5	11
61	Structural modifications and in vitro pharmacological evaluation of 4-pyridyl-piperazine derivatives as an active and selective histamine H3 receptor ligands. Bioorganic Chemistry, 2019, 91, 103071.	4.1	14
62	Novel meriolin derivatives as rapid apoptosis inducers. Bioorganic and Medicinal Chemistry, 2019, 27, 3463-3468.	3.0	13
63	Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLoS ONE, 2019, 14, e0218820.	2.5	16
64	Nature-inspired pyrrolo[2,3-d]pyrimidines targeting the histamine H3 receptor. Bioorganic and Medicinal Chemistry, 2019, 27, 3194-3200.	3.0	12
65	Histamine H3 receptor antagonists/inverse agonists: Where do they go?. , 2019, 200, 69-84.		48
66	Role of Histamine H3 Receptor Antagonists on Intraocular Pressure Reduction in Rabbit Models of Transient Ocular Hypertension and Glaucoma. International Journal of Molecular Sciences, 2019, 20, 981.	4.1	16
67	Human β-Defensin 2 Expression in Oral Epithelium: Potential Therapeutic Targets in Oral Lichen Planus. International Journal of Molecular Sciences, 2019, 20, 1780.	4.1	16
68	Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 1254-1262.	3.0	10
69	Histamine H ₃ receptor ligands by hybrid virtual screening, docking, molecular dynamics simulations, and investigation of their biological effects. Chemical Biology and Drug Design, 2019, 93, 832-843.	3.2	25
70	Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nature Communications, 2019, 10, 29.	12.8	113
71	Histamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
72	Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis. World Journal of Gastroenterology, 2019, 25, 2846-2862.	3.3	15

#	Article	IF	CITATIONS
73	Antinociceptive effects of novel histamine H ₃ and H ₄ receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. British Journal of Pharmacology, 2018, 175, 2897-2910.	5.4	36
74	The histamine H4 receptor modulates the differentiation process of human monocyte-derived M1 macrophages and the release of CCL4/MIP-11 ² from fully differentiated M1 macrophages. Inflammation Research, 2018, 67, 503-513.	4.0	19
75	Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. European Journal of Medicinal Chemistry, 2018, 152, 223-234.	5.5	24
76	Novel naphthyloxy derivatives – Potent histamine H3 receptor ligands. Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 2573-2585.	3.0	24
77	Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson's disease. European Journal of Medicinal Chemistry, 2018, 148, 487-497.	5.5	41
78	HPV Vaccination: Prevention of Cervical Cancer in Serbia and in Europe. Acta Facultatis Medicae Naissensis, 2018, 35, 5-16.	0.4	3
79	Optimization and preclinical evaluation of novel histamine H3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives. Bioorganic and Medicinal Chemistry, 2018, 26, 6056-6066.	3.0	12
80	Studies on Anticonvulsant Effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. International Journal of Molecular Sciences, 2018, 19, 3386.	4.1	18
81	Selenazolyl-hydrazones as Novel Selective MAO Inhibitors With Antiproliferative and Antioxidant Activities: Experimental and In-silico Studies. Frontiers in Chemistry, 2018, 6, 247.	3.6	34
82	Design, synthesis, and biological evaluation of novel oxadiazole- and thiazole-based histamine H3R ligands. Bioorganic and Medicinal Chemistry, 2018, 26, 4034-4046.	3.0	17
83	New lead elements for histamine H3 receptor ligands in the pyrrolo[2,3-d]pyrimidine class. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2890-2893.	2.2	3
84	Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacology Biochemistry and Behavior, 2018, 170, 14-24.	2.9	8
85	Binding kinetics of cariprazine and aripiprazole at the dopamine D3 receptor. Scientific Reports, 2018, 8, 12509.	3.3	29
86	Differential effects of functionally different histamine H4 receptor ligands on acute irritant dermatitis in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 1387-1397.	3.0	2
87	The Anaphylatoxin C3a Receptor Expression on Human M2 Macrophages Is Down-Regulated by Stimulating the Histamine H4 Receptor and the IL-4 Receptor. Journal of Innate Immunity, 2018, 10, 349-362.	3.8	17
88	Experimental autoimmune myocarditis in rats and therapeutic histamine H1 - H4 receptor inhibition. Journal of Physiology and Pharmacology, 2018, 69, .	1.1	2
89	NOVEL OXAZOLO-OXAZOLE DERIVATIVES OF FINGOLIMOD INDUCE LYMPHOPENIA AND REDUCE SYMPTOMS OF EAE IN MICE. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR24-1.	0.0	0
90	Histamine H3 Receptor Antagonists for Narcolepsy and (Un) Related Diseases. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY43-1.	0.0	0

#	Article	IF	CITATIONS
91	Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B. Scientific Reports, 2017, 7, 40541.	3.3	27
92	Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands. ACS Medicinal Chemistry Letters, 2017, 8, 648-653.	2.8	7
93	Further Developments. Archiv Der Pharmazie, 2017, 350, e1770010.	4.1	0
94	Synthesis and biological activity of novel tert -amylphenoxyalkyl (homo)piperidine derivatives as histamine H 3 R ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 2701-2712.	3.0	13
95	Characterization of the molecular mechanism of 5-lipoxygenase inhibition by 2-aminothiazoles. Biochemical Pharmacology, 2017, 123, 52-62.	4.4	9
96	An Allosteric Inhibitor Scaffold Targeting the PIF-Pocket of Atypical Protein Kinase C Isoforms. ACS Chemical Biology, 2017, 12, 564-573.	3.4	18
97	Quantitative Analysis of Multicomponent Mixtures of Over-the-Counter Pain Killer Drugs by Low-Field NMR Spectroscopy. Journal of Chemical Education, 2017, 94, 121-125.	2.3	18
98	Introducing Students to NMR Methods Using Low-Field ¹ H NMR Spectroscopy to Determine the Structure and the Identity of Natural Amino Acids. Journal of Chemical Education, 2017, 94, 115-120.	2.3	24
99	Multipotente Liganden mit kombinierter Cholinesterase―und Monoaminooxidaseâ€Inhibition sowie Histaminâ€H 3 Râ€Antagonismus bei neurodegenerativen Erkrankungen. Angewandte Chemie, 2017, 129, 12939-12943.	2.0	2
100	Multitargetâ€Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H ₃ R Antagonism for Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2017, 56, 12765-12769.	13.8	83
101	Biphenyloxy-alkyl-piperidine and azepane derivatives as histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 5341-5354.	3.0	16
102	From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation. Inflammation Research, 2017, 66, 923-929.	4.0	18
103	Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Medicinal Research Reviews, 2017, 37, 3-51.	10.5	17
104	Synthesis, Molecular Properties Estimations, and Dual Dopamine D2 and D3 Receptor Activities of Benzothiazole-Based Ligands. Frontiers in Chemistry, 2017, 5, 64.	3.6	11
105	Low Field NMR Determination of pKa Values for Hydrophilic Drugs for Students in Medicinal Chemistry. Magnetochemistry, 2017, 3, 29.	2.4	5
106	Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight, 2017, 2, .	5.0	49
107	Another Piece Of Puzzle In Adjuvant Treatment Of Inflammatory Diseases With Natural Compounds. , 2017, , .		0
108	From Magic Bullet To Magic Pump Gun: Multi-targeting Drugs For Neurodegenerative Diseases. , 2017, , .		0

#	Article	IF	CITATIONS
109	Anticonvulsant effects of isomeric nonimidazole histamine H ₃ receptor antagonists. Drug Design, Development and Therapy, 2016, Volume 10, 3633-3651.	4.3	20
110	Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. Drug Design, Development and Therapy, 2016, Volume 10, 3879-3898.	4.3	25
111	Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Frontiers in Neuroscience, 2016, 10, 201.	2.8	39
112	Dopamine D3 Receptor Antagonists as Potential Therapeutics for the Treatment of Neurological Diseases. Frontiers in Neuroscience, 2016, 10, 451.	2.8	66
113	Human basophil chemotaxis and activation are regulated via the histamine H4 receptor. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1264-1273.	5.7	28
114	The Synthesis of 1,3,5â€ŧriazine Derivatives and JNJ7777120 Analogues with Histamine H ₄ Receptor Affinity and Their Interaction with <i>PTEN</i> Promoter. Chemical Biology and Drug Design, 2016, 88, 254-263.	3.2	10
115	Polypharmacology of dopamine receptor ligands. Progress in Neurobiology, 2016, 142, 68-103.	5.7	57
116	Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments. Neuropharmacology, 2016, 105, 341-350.	4.1	20
117	Allergic inflammation is augmented via histamine H4 receptor activation: The role of natural killer cells in vitro and in vivo. Journal of Dermatological Science, 2016, 83, 106-115.	1.9	23
118	261 Stimulation of the histamine 4 receptor increases the production of IL-5 in innate lymphoid cells. Journal of Investigative Dermatology, 2016, 136, S205.	0.7	0
119	Role of histamine H 4 receptor ligands in bleomycin-induced pulmonary fibrosis. Pharmacological Research, 2016, 111, 740-748.	7.1	20
120	Stimulation of the histamine 4 receptor upregulates thymic stromal lymphopoietin (TSLP) in human and murine keratinocytes. Pharmacological Research, 2016, 113, 209-215.	7.1	22
121	Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behavioural Brain Research, 2016, 312, 415-430.	2.2	124
122	Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochemical Pharmacology, 2016, 103, 74-84.	4.4	21
123	Development of novel aminothiazole-comprising 5-LO inhibitors. Future Medicinal Chemistry, 2016, 8, 149-164.	2.3	21
124	Chlorophenoxy aminoalkyl derivatives as histamine H3R ligands and antiseizure agents. Bioorganic and Medicinal Chemistry, 2016, 24, 53-72.	3.0	28
125	Improving selectivity of dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 885-888.	2.2	6
126	Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology, 2016, 106, 56-73.	4.1	66

#	Article	IF	CITATIONS
127	Histamine H3R Antagonists: From Scaffold Hopping to Clinical Candidates. Receptors, 2016, , 109-155.	0.2	14
128	Identification of histamine receptor subtypes in skeletal myogenesis. Molecular Medicine Reports, 2015, 11, 2624-2630.	2.4	13
129	Next Steps in Advancing Publication. Archiv Der Pharmazie, 2015, 348, 1-1.	4.1	15
130	Histamine H4 receptor activation alleviates neuropathic pain through differential regulation of ERK, JNK, and P38 MAPK phosphorylation. Pain, 2015, 156, 2492-2504.	4.2	52
131	Histamine H ₄ Receptor Antagonists: A New Approach for Tinnitus Treatment?. Recent Patents on CNS Drug Discovery, 2015, 10, 6-9.	0.9	1
132	The Histamine H4 Receptor Regulates Chemokine Production in Human Natural Killer Cells. International Archives of Allergy and Immunology, 2015, 166, 225-230.	2.1	12
133	Pharmacophore modeling, drug design and virtual screening on multi-targeting procognitive agents approaching histaminergic pathways. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 15-29.	5.3	11
134	A search for functional histamine H4 receptors in the human, guinea pig and mouse brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 11-17.	3.0	16
135	Activation of histamine H3 receptor decreased cytoplasmic Ca2+ imaging during electrical stimulation in the skeletal myotubes. European Journal of Pharmacology, 2015, 754, 173-178.	3.5	5
136	Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action. Toxicology and Applied Pharmacology, 2015, 287, 67-76.	2.8	27
137	Development of Fluorine-18 Labeled Metabolically Activated Tracers for Imaging of Drug Efflux Transporters with Positron Emission Tomography. Journal of Medicinal Chemistry, 2015, 58, 6058-6080.	6.4	18
138	Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties. Bioorganic and Medicinal Chemistry, 2015, 23, 3490-3498.	3.0	15
139	FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P3 and phosphoinositide 3-kinase. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1283-1292.	3.0	26
140	Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors. Biological Chemistry, 2015, 396, 783-794.	2.5	17
141	Histamine H ₄ receptor in oral lichen planus. Oral Diseases, 2015, 21, 378-385.	3.0	16
142	International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacological Reviews, 2015, 67, 601-655.	16.0	457
143	(2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands. European Journal of Medicinal Chemistry, 2015, 103, 238-251.	5.5	24
144	Dopamine D3 receptor agonists as pharmacological tools. European Neuropsychopharmacology, 2015, 25, 1480-1499.	0.7	12

#	Article	IF	CITATIONS
145	Predicting targets of compounds against neurological diseases using cheminformatic methodology. Journal of Computer-Aided Molecular Design, 2015, 29, 183-198.	2.9	16
146	Development and evaluation of ST-1829 based on 5-benzylidene-2-phenylthiazolones as promising agent for anti-leukotriene therapy. European Journal of Medicinal Chemistry, 2015, 89, 503-523.	5.5	12
147	Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H3 receptor antagonist ST-1283. Drug Design, Development and Therapy, 2014, 8, 627.	4.3	38
148	Drug-likeness approach of 2-aminopyrimidines as histamine H3 receptor ligands. Drug Design, Development and Therapy, 2014, 8, 1499.	4.3	11
149	Prevention of Bleomycin-Induced Lung Inflammation and Fibrosis in Mice by Naproxen and JNJ7777120 Treatment. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 308-316.	2.5	22
150	Dopamine D3 Receptor Is Necessary for Ethanol Consumption: An Approach with Buspirone. Neuropsychopharmacology, 2014, 39, 2017-2028.	5.4	52
151	Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1702-1711.	4.9	8
152	Modulation of <scp>IL</scp> â€33/ <scp>ST</scp> 2â€ <scp>TIR</scp> and <scp>TLR</scp> Signalling Pathway by Fingolimod and Analogues in Immune Cells. Scandinavian Journal of Immunology, 2014, 80, 398-407.	2.7	8
153	Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. Behavioural Pharmacology, 2014, 25, 245-252.	1.7	31
154	Histamine Downregulates the Th1-Associated Chemokine IP-10 in Monocytes and Myeloid Dendritic Cells. International Archives of Allergy and Immunology, 2014, 163, 11-19.	2.1	19
155	Molecular Mechanism of Regulation of the Atypical Protein Kinase C by N-terminal Domains and an Allosteric Small Compound. Chemistry and Biology, 2014, 21, 754-765.	6.0	24
156	Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. European Journal of Medicinal Chemistry, 2014, 77, 269-279.	5.5	49
157	Benzylpiperidine variations on histamine H3 receptor ligands for improved drug-likeness. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2236-2239.	2.2	11
158	Procognitive Properties of Drugs with Single and Multitargeting H ₃ Receptor Antagonist Activities. CNS Neuroscience and Therapeutics, 2014, 20, 613-623.	3.9	29
159	Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs. European Journal of Medicinal Chemistry, 2014, 86, 578-588.	5.5	9
160	Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. European Journal of Medicinal Chemistry, 2014, 84, 302-311.	5.5	29
161	Design, synthesis and evaluation of 2-aminothiazole derivatives as sphingosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5354-5367.	3.0	37
162	Unique immunomodulatory effects of azelastine on dendritic cells in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 1091-1099.	3.0	4

#	Article	IF	CITATIONS
163	Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 85, 314-327.	4.1	24
164	Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. European Journal of Medicinal Chemistry, 2014, 83, 534-546.	5.5	46
165	Influence of the novel histamine H3 receptor antagonist ST1283 on voluntary alcohol consumption and ethanol-induced place preference in mice. Psychopharmacology, 2013, 228, 85-95.	3.1	31
166	From a Multipotent Stilbene to Soluble Epoxide Hydrolase Inhibitors with Antiproliferative Properties. ChemMedChem, 2013, 8, 919-923.	3.2	25
167	Microdialysate analysis of monoamine neurotransmitters—A versatile and sensitive LC–MS/MS method. Analytica Chimica Acta, 2013, 771, 65-72.	5.4	67
168	Synthesis of novel dansyl-labeled Celecoxib derivatives. Tetrahedron Letters, 2013, 54, 6682-6686.	1.4	9
169	Exploring the Chemical Space of Multitarget Ligands Using Aligned Self-Organizing Maps. ACS Medicinal Chemistry Letters, 2013, 4, 1169-1172.	2.8	33
170	Polymorphisms and genetic linkage of histamine receptors. Life Sciences, 2013, 93, 487-494.	4.3	20
171	Synthesis and evaluation of novel ligands for the histamine H4 receptor based on a pyrrolo[2,3-d]pyrimidine scaffold. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 132-137.	2.2	11
172	Scaffold variations in amine warhead of histamine H3 receptor antagonists. Drug Discovery Today: Technologies, 2013, 10, e483-e489.	4.0	25
173	Argyreia nervosa (Burm. f.): Receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. Journal of Ethnopharmacology, 2013, 148, 492-497.	4.1	27
174	Bodilisant—A Novel Fluorescent, Highly Affine Histamine H ₃ Receptor Ligand. ACS Medicinal Chemistry Letters, 2013, 4, 269-273.	2.8	22
175	Profiling of histamine <scp>H</scp> ₄ receptor agonists in native human monocytes. British Journal of Pharmacology, 2013, 170, 136-143.	5.4	25
176	Ca2+-sensing Receptor Cleavage by Calpain Partially Accounts for Altered Vascular Reactivity in Mice Fed a High-fat Diet. Journal of Cardiovascular Pharmacology, 2013, 61, 528-535.	1.9	30
177	Luciferase Reporter Gene Assay on Human, Murine and Rat Histamine H4 Receptor Orthologs: Correlations and Discrepancies between Distal and Proximal Readouts. PLoS ONE, 2013, 8, e73961.	2.5	24
178	Activation of Rac-1 and RhoA Contributes to Podocyte Injury in Chronic Kidney Disease. PLoS ONE, 2013, 8, e80328.	2.5	74
179	Piperazine modification in 2,4,6-triaminopyrimidine derivatives as histamine H4 receptor ligands. Die Pharmazie, 2013, 68, 521-5.	0.5	6
180	DOGS: Reaction-Driven de novo Design of Bioactive Compounds. PLoS Computational Biology, 2012, 8, e1002380.	3.2	193

#	Article	IF	CITATIONS
181	Overdose of the histamine H3 inverse agonist pitolisant increases thermal pain thresholds. Inflammation Research, 2012, 61, 1283-1291.	4.0	8
182	Fluorescent Human EP ₃ Receptor Antagonists. ACS Medicinal Chemistry Letters, 2012, 3, 774-779.	2.8	12
183	Molecular pharmacological profile of a novel thiazolinoneâ€based direct and selective 5â€lipoxygenase inhibitor. British Journal of Pharmacology, 2012, 165, 2304-2313.	5.4	14
184	Inhibitors of specific ceramide synthases. Biochimie, 2012, 94, 558-565.	2.6	44
185	Histamine receptor subtypes a century of rational drug design. Frontiers in Bioscience - Scholar, 2012, S4, 461-488.	2.1	58
186	Novel Chalcone-Based Fluorescent Human Histamine H3 Receptor Ligands as Pharmacological Tools. Frontiers in Systems Neuroscience, 2012, 6, 14.	2.5	30
187	Histamine receptor subtypes: a century of rational drug design. Frontiers in Bioscience - Scholar, 2012, S4, 461.	2.1	21
188	Brief Report: First identification of H ₄ histamine receptor in healthy salivary glands and in focal sialadenitis in Sjögren's syndrome. Arthritis and Rheumatism, 2012, 64, 2663-2668.	6.7	16
189	Radiofluorinated histamine H3 receptor antagonist as a potential probe for in vivo PET imaging: Radiosynthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2012, 20, 2889-2896.	3.0	12
190	Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 3575-3583.	3.0	18
191	SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1969-1975.	2.2	46
192	A Class of 5-Benzylidene-2-phenylthiazolinones with High Potency as Direct 5-Lipoxygenase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 1943-1947.	6.4	29
193	Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience, 2011, 190, 89-102.	2.3	122
194	Lack of preventing effect of systemically and topically administered histamine H ₁ or H ₄ receptor antagonists in a dog model of acute atopic dermatitis. Experimental Dermatology, 2011, 20, 577-581.	2.9	39
195	Receptor-specific functional efficacies of alkyl imidazoles as dual histamine H3/H4 receptor ligands. European Journal of Pharmacology, 2011, 654, 200-208.	3.5	59
196	The histamine H4 receptor: Targeting inflammatory disorders. European Journal of Pharmacology, 2011, 668, 1-5.	3.5	43
197	N-Alkenyl and cycloalkyl carbamates as dual acting histamine H3 and H4 receptor ligands. Bioorganic and Medicinal Chemistry, 2011, 19, 2850-2858.	3.0	20
198	Synthesis of 1,2,3-Triazole Elements in Histamine H3 Receptor Ligands. Synthesis, 2011, 2011, 2733-2736.	2.3	0

#	Article	IF	CITATIONS
199	Murine and human Langerhans cells express a functional histamine H ₄ receptor: modulation of cell migration and function. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 840-849.	5.7	56
200	Kojic Acid Derivatives as Histamine H3 Receptor Ligands. Chemical and Pharmaceutical Bulletin, 2010, 58, 1353-1361.	1.3	31
201	Search for novel, high affinity histamine H3 receptor ligands with fluorescent properties. Inflammation Research, 2010, 59, 247-248.	4.0	9
202	Lead identification and optimization of diaminopyrimidines as histamine H4 receptor ligands. Inflammation Research, 2010, 59, 249-251.	4.0	7
203	In Silico Characterization of Ligand Binding Modes in the Human Histamine H ₄ Receptor and their Impact on Receptor Activation. ChemBioChem, 2010, 11, 1850-1855.	2.6	9
204	Acidic elements in histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1581-1584.	2.2	22
205	Efficient chromatography-free synthesis of the oxy-analogue of fingolimod. Tetrahedron Letters, 2010, 51, 3769-3771.	1.4	13
206	Azole derivatives as histamine H3 receptor antagonists, Part I: Thiazol-2-yl ethers. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5879-5882.	2.2	13
207	Azole derivatives as histamine H3 receptor antagonists, Part 2: C–C and C–S coupled heterocycles. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5883-5886.	2.2	6
208	Histamine H3 Receptors Are Involved in the Protective Effect of Ghrelin against HCl-Induced Gastric Damage in Rats. Pharmacology, 2010, 86, 259-266.	2.2	13
209	First Metal-Containing Histamine H ₃ Receptor Ligands. Organic Letters, 2010, 12, 2578-2581.	4.6	20
210	Pharmacological Analysis Demonstrates Dramatic Alteration of D ₁ Dopamine Receptor Neuronal Distribution in the Rat Analog of I-DOPA-Induced Dyskinesia. Journal of Neuroscience, 2009, 29, 4829-4835.	3.6	128
211	From Molecular Shape to Potent Bioactive Agents II: Fragmentâ€Based deâ€novo Design. ChemMedChem, 2009, 4, 45-48.	3.2	26
212	Homology Model Adjustment and Ligand Screening with a Pseudoreceptor of the Human Histamine H ₄ Receptor. ChemMedChem, 2009, 4, 820-827.	3.2	36
213	2,4-Diaminopyrimidines as histamine H4 receptor ligands—Scaffold optimization and pharmacological characterization. Bioorganic and Medicinal Chemistry, 2009, 17, 7186-7196.	3.0	63
214	Diether (substituted) piperidine derivatives as novel, histamine H3 receptor ligands. Inflammation Research, 2009, 58, 47-48.	4.0	0
215	SQUIRRELnovo: de novo design of a PPARα agonist by bioisosteric replacement. Chemistry Central Journal, 2009, 3,	2.6	0
216	The histamine H ₄ receptor as a new target for treatment of canine inflammatory skin diseases. Veterinary Dermatology, 2009, 20, 555-561.	1.2	15

#	Article	IF	CITATIONS
217	Histamine H ₄ receptor antagonism reduces haptenâ€induced scratching behaviour but not inflammation. Experimental Dermatology, 2009, 18, 57-63.	2.9	125
218	Histamine H3 and H4 receptor affinity of branched 3-(1H-imidazol-4-yl)propyl N-alkylcarbamates. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6682-6685.	2.2	17
219	Diether derivatives of homo- or substituted piperidines as non-imidazole histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2009, 17, 3037-3042.	3.0	11
220	Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 538-542.	2.2	48
221	Fluorinated non-imidazole histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2172-2175.	2.2	28
222	Histamine H ₃ and H ₄ receptors as novel drug targets. Expert Opinion on Investigational Drugs, 2009, 18, 1519-1531.	4.1	130
223	The histamine H4 receptor is functionally expressed on TH2 cells. Journal of Allergy and Clinical Immunology, 2009, 123, 619-625.	2.9	199
224	Honorary membership of the European Histamine Research Society (EHRS). Inflammation Research, 2008, 57, 3-4.	4.0	0
225	Editorial: Pharmazie in unserer Zeit 6/2008. Pharmazie in Unserer Zeit, 2008, 37, 441-441.	0.0	0
226	Refined Docking as a Valuable Tool for Lead Optimization: Application to Histamine H ₃ Receptor Antagonists. Archiv Der Pharmazie, 2008, 341, 610-623.	4.1	40
227	Editorial: Archiv der Pharmazie 9/2008. Archiv Der Pharmazie, 2008, 341, 521-521.	4.1	0
228	Piperidine variations in search for non-imidazole histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2008, 16, 8729-8736.	3.0	16
229	Human Inflammatory Dendritic Epidermal Cells Express a Functional Histamine H4 Receptor. Journal of Investigative Dermatology, 2008, 128, 1696-1703.	0.7	96
230	Histamine H ₄ receptors modulate dendritic cell migration through skin – immunomodulatory role of histamine. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 1387-1394.	5.7	85
231	A solid phase parallel synthesis of diverse amides as dopamine D3 receptor ligands. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 588-592.	5.2	2
232	Identification of Dopamine D1–D3 Receptor Heteromers. Journal of Biological Chemistry, 2008, 283, 26016-26025.	3.4	216
233	Histamine H3 Receptor Antagonists Go to Clinics. Biological and Pharmaceutical Bulletin, 2008, 31, 2163-2181.	1.4	183

#	Article	IF	CITATIONS
235	BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, Hydrochloride], a Nonimidazole Inverse Agonist/Antagonist at the Human Histamine H3 Receptor: Preclinical Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 365-375.	2.5	231
236	Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. Journal of Allergy and Clinical Immunology, 2007, 120, 300-307.	2.9	115
237	N-(4-(4-(2-Halogenophenyl)piperazin-1-yl)butyl) Substituted Cinnamoyl Amide Derivatives as Dopamine D2and D3 Receptor Ligands. Archiv Der Pharmazie, 2007, 340, 178-184.	4.1	10
238	Designs that Enrich Lives: Archiv der Pharmazie 10/2007. Archiv Der Pharmazie, 2007, 340, 509-510.	4.1	0
239	Highly Potent Fluorescence-Tagged Nonimidazole Histamine H3 Receptor Ligands. ChemMedChem, 2007, 2, 708-716.	3.2	46
240	GPCR Targeted Library Design: Novel Dopamine D3 Receptor Ligands. ChemMedChem, 2007, 2, 1000-1005.	3.2	11
241	Hybrid approach for the design of highly affine and selective dopamine D3 receptor ligands using privileged scaffolds of biogenic amine GPCR ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 7258-7273.	3.0	20
242	1-(3-{4-[(2,4-Dinitroanilino)methyl]phenoxy}propyl)piperidinium chloride. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4074-o4074.	0.2	0
243	Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening. Journal of Computer-Aided Molecular Design, 2007, 21, 437-453.	2.9	68
244	Pharmacological aspects of cognitive impairment: past, present and future of drugs in dementia. Journal of Applied Biomedicine, 2007, 5, 57-70.	1.7	2
245	Ether derivatives of 3-piperidinopropan-1-ol as non-imidazole histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry, 2006, 14, 3522-3529.	3.0	35
246	Fluorescent non-imidazole histamine H3 receptor ligands with nanomolar affinities. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1938-1940.	2.2	27
247	Predicting Compound Selectivity by Self-Organizing Maps: Cross-Activities of Metabotropic Glutamate Receptor Antagonists. ChemMedChem, 2006, 1, 1066-1068.	3.2	54
248	Multiple enzyme inhibitions by histamine H3 receptor antagonists as potential procognitive agents. Die Pharmazie, 2006, 61, 179-82.	0.5	27
249	Parallel synthesis and dopamine D3/D2 receptor screening of novel {4-[4-(2-methoxyphenyl)piperazin-1-yl]butyl}carboxamides. Bioorganic and Medicinal Chemistry, 2005, 13, 2009-2014.	3.0	15
250	Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathology and Applied Neurobiology, 2005, 31, 150-162.	3.2	39
251	Frontiers in GPCR Research. Archiv Der Pharmazie, 2005, 338, 207-207.	4.1	0
252	From Virtual to Real Screening for D3 Dopamine Receptor Ligands. ChemBioChem, 2005, 6, 997-999.	2.6	29

#	Article	IF	CITATIONS
253	Search for Histamine H3 Receptor Ligands with Combined Inhibitory Potency at Histamine N-Methyltransferase: ω-Piperidinoalkanamine Derivatives ChemInform, 2005, 36, no.	0.0	0
254	Search for Histamine H3 Receptor Antagonists with Combined Inhibitory Potency at NÏ"-Methyltransferase: Ether Derivatives ChemInform, 2005, 36, no.	0.0	2
255	Model of a specific human histamine H3 receptor (hH3R) binding pocket suitable for virtual drug design. Inflammation Research, 2005, 54, S50-S51.	4.0	9
256	Dopamine D3 Receptor Ligands Block Nicotine-Induced Conditioned Place Preferences through a Mechanism that does not Involve Discriminative-Stimulus or Antidepressant-Like Effects. Neuropsychopharmacology, 2005, 30, 720-730.	5.4	100
257	Histamine H4 Receptor Stimulation Suppresses IL-12p70 Production and Mediates Chemotaxis in Human Monocyte-Derived Dendritic Cells. Journal of Immunology, 2005, 174, 5224-5232.	0.8	210
258	Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism and Related Disorders, 2005, 11, S25-S29.	2.2	113
259	Neurotransmitters, Agonists, and Antagonists. , 2005, , 523-556.		0
260	Search for histamine H3 receptor antagonists with combined inhibitory potency at Ntau-methyltransferase: ether derivatives. Die Pharmazie, 2005, 60, 97-106.	0.5	15
261	Piperidine-containing histamine H3 receptor antagonists of the carbamate series: the alkyl derivatives. Die Pharmazie, 2005, 60, 403-10.	0.5	4
262	Brain-Derived Neurotrophic Factor And The Plasticity Of The Mesolimbic Dopamine Pathway. International Review of Neurobiology, 2004, 59, 425-444.	2.0	39
263	Turning from monogamy to strategic promiscuity. Drug Discovery Today, 2004, 9, 736-737.	6.4	16
264	Plasticity of histamine H3 receptor expression and binding in the vestibular nuclei after labyrinthectomy in rat. BMC Neuroscience, 2004, 5, 32.	1.9	18
265	Unexpected partial H1-receptor agonism of imidazole-type histamine H3-receptor antagonists lacking a basic side chain. Inflammation Research, 2004, 53, S109-15.	4.0	0
266	Search for Histamine H3Receptor Ligands with Combined Inhibitory Potency at HistamineN-Methyltransferase: ω-Piperidinoalkanamine Derivatives. Archiv Der Pharmazie, 2004, 337, 533-545.	4.1	15
267	Dedication to H. Schönenberger and Thanks to R. Hartmann. Archiv Der Pharmazie, 2004, 337, 623-623.	4.1	0
268	Development of Novel 1,2,3,4-Tetrahydroisoquinoline Derivatives and Closely Related Compounds as Potent and Selective Dopamine D3 Receptor Ligands. ChemBioChem, 2004, 5, 508-518.	2.6	85
269	The Efficiency of HMG-CoA-Reductase Inhibitors: Medicinal—Chemical Aspects of Statines ChemInform, 2004, 35, no	0.0	0
270	H1-Histamines: Development, Structure and Novel Trends. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
271	Structural variations of 1-(4-(phenoxymethyl)benzyl)piperidines as nonimidazole histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry, 2004, 12, 2727-2736.	3.0	18
272	4-(ω-(Alkyloxy)alkyl)-1H-imidazole Derivatives as Histamine H3Receptor Antagonists/Agonists. Journal of Medicinal Chemistry, 2004, 47, 2678-2687.	6.4	9
273	Meta-Substituted Aryl(thio)ethers as Potent Partial Agonists (or Antagonists) for the Histamine H3Receptor Lacking a Nitrogen Atom in the Side Chain§. Journal of Medicinal Chemistry, 2004, 47, 3264-3274.	6.4	9
274	Medicinal Chemical and Pharmacological Aspects of Imidazole-Containing Histamine H3 Receptor Antagonists. Mini-Reviews in Medicinal Chemistry, 2004, 4, 965-977.	2.4	61
275	N-(ω-(4-(2-Methoxyphenyl)piperazin-1-yl)alkyl)carboxamides as Dopamine D2and D3Receptor Ligands. Journal of Medicinal Chemistry, 2003, 46, 3883-3899.	6.4	100
276	Replacement of imidazole by a piperidine moiety differentially affects the potency of histamine H3-receptor antagonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 43-50.	3.0	19
277	Imidazole derivatives as a novel class of hybrid compounds with inhibitory histamine N-methyltransferase potencies and histamine hH3 receptor affinities. Bioorganic and Medicinal Chemistry, 2003, 11, 2163-2174.	3.0	28
278	Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature Medicine, 2003, 9, 762-767.	30.7	370
279	Novel Nonimidazole Histamine H3 Receptor Antagonists:  1-(4-(Phenoxymethyl)benzyl)piperidines and Related Compounds. Journal of Medicinal Chemistry, 2003, 46, 1523-1530.	6.4	34
280	Constitutive activity of the recombinant and native histamine H3 receptor. International Congress Series, 2003, 1249, 139-151.	0.2	2
281	Recent advances in histamine H3/H4receptor ligands. Expert Opinion on Therapeutic Patents, 2003, 13, 851-865.	5.0	63
282	Protean agonism at histamine H3 receptors in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11086-11091.	7.1	136
283	Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor. Journal of Neural Transmission Supplementum, 2003, , 1-16.	0.5	31
284	Development of a New Class of Nonimidazole Histamine H3 Receptor Ligands with Combined Inhibitory Histamine N-Methyltransferase Activity. Journal of Medicinal Chemistry, 2002, 45, 1128-1141.	6.4	67
285	Influence of Bulky Substituents on Histamine H3Receptor Agonist/Antagonist Propertiesâ€. Journal of Medicinal Chemistry, 2002, 45, 4000-4010.	6.4	20
286	Progress in the proxifan class: heterocyclic congeners as novel potent and selective histamine H3-receptor antagonists. European Journal of Pharmaceutical Sciences, 2002, 15, 367-378.	4.0	47
287	Dopamine D3 Receptor Ligands with Antagonist Properties. ChemBioChem, 2002, 3, 946-961.	2.6	74
288	5. Histamine receptor expression¶Impact of lipophilicity on the pharmacological properties of histamine H3-receptor antagonists of the cycloalkyl carbamate class. Inflammation Research, 2002, 51, 71-72.	4.0	0

#	Article	IF	CITATIONS
289	Piperidino-Hydrocarbon compounds as novel non-Imidazole histamine H3-Receptor antagonists. Bioorganic and Medicinal Chemistry, 2002, 10, 2535-2542.	3.0	19
290	Application of genomics to drug design: the example of the histamine H3 receptor. European Neuropsychopharmacology, 2001, 11, 441-448.	0.7	18
291	6 The Histamine H3 Receptor and its Ligands. Progress in Medicinal Chemistry, 2001, 38, 279-308.	10.4	41
292	Different antagonist binding properties of human and rat histamine H3 receptors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 951-954.	2.2	51
293	Enzyme-catalyzed prodrug approaches for the histamine H3-receptor agonist (R)-α-methylhistamine. Bioorganic and Medicinal Chemistry, 2001, 9, 191-198.	3.0	13
294	Separation of chiral 4-substituted imidazole derivatives by cyclodextrin-modified capillary electrophoresis. Biomedical Chromatography, 2001, 15, 25-30.	1.7	11
295	Benzophenone Derivatives and Related Compounds as Potent Histamine H3-Receptor Antagonists and Potential PET/SPECT Ligands. Archiv Der Pharmazie, 2001, 334, 45-52.	4.1	17
296	Novel histamine H3 -receptor antagonists and partial agonists with a non-aminergic structure. British Journal of Pharmacology, 2001, 132, 1665-1672.	5.4	15
297	Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists. British Journal of Pharmacology, 2001, 133, 1243-1248.	5.4	20
298	Influence of imidazole replacement in different structural classes of histamine H3-receptor antagonists. European Journal of Pharmaceutical Sciences, 2001, 13, 249-259.	4.0	103
299	Azomethine Prodrugs of (R)-alpha-Methylhistamine, a Highly Potent and Selective Histamine H3-Receptor Agonist. Current Medicinal Chemistry, 2001, 8, 1329-1340.	2.4	27
300	Piperidine-containing histamine H3-receptor antagonists of the carbamate series: variation of the spacer length. Die Pharmazie, 2001, 56, 927-32.	0.5	4
301	Convenient Procedures for Synthesis of Ciproxifan, a Histamine H3-Receptor Antagonist. Archiv Der Pharmazie, 2000, 333, 315-316.	4.1	6
302	Analogues and derivatives of ciproxifan, a novel prototype for generating potent histamine H3-receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2379-2382.	2.2	7
303	(Partial) agonist/antagonist properties of novel diarylalkyl carbamates on histamine H 3 receptors. Bioorganic and Medicinal Chemistry, 2000, 8, 1139-1149.	3.0	19
304	Histamine H ₃ â€receptor antagonists inhibit gastroprotection by (R)â€Î±â€methylhistamine in the rat. British Journal of Pharmacology, 2000, 129, 1597-1600.	5.4	13
305	Distinct pharmacology of rat and human histamine H3 receptors: role of two amino acids in the third transmembrane domain. British Journal of Pharmacology, 2000, 131, 1247-1250.	5.4	140
306	High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature, 2000, 408, 860-864.	27.8	449

#	Article	IF	CITATIONS
307	New Histamine H3-Receptor Ligands of the Proxifan Series:  Imoproxifan and Other Selective Antagonists with High Oral in Vivo Potency. Journal of Medicinal Chemistry, 2000, 43, 3335-3343.	6.4	29
308	Novel Histamine H3-Receptor Antagonists with Carbonyl-Substituted 4-(3-(Phenoxy)propyl)-1H-imidazole Structures like Ciproxifan and Related Compounds. Journal of Medicinal Chemistry, 2000, 43, 3987-3994.	6.4	49
309	Substituted N-phenylcarbamates as histamine H3 receptor antagonists with improved in vivo potency. Die Pharmazie, 2000, 55, 83-6.	0.5	5
310	Anti-inflammatory and antinociceptive properties of BP 2-94, a histamine H(3)-receptor agonist prodrug. Journal of Pharmacology and Experimental Therapeutics, 2000, 295, 219-25.	2.5	28
311	Importance of the lipophilic group in carbamates having histamine H3-receptor antagonist activity. Die Pharmazie, 2000, 55, 349-55.	0.5	6
312	Heterocyclic congeners of PD 128,907 with a partially hydrogenated benzomorpholine moiety as potential dopamine D3-receptor ligands. European Journal of Medicinal Chemistry, 1999, 34, 791-798.	5.5	14
313	Novel Partial Agonists for the Histamine H3 Receptor with High in Vitro and in Vivo Activity. Journal of Medicinal Chemistry, 1999, 42, 4269-4274.	6.4	29
314	Radiosynthesis and biodistribution of 123I-labeled antagonists of the histamine H3 receptor as potential SPECT ligands. Nuclear Medicine and Biology, 1999, 26, 651-659.	0.6	10
315	Development of ChiralN-Alkylcarbamates as New Leads for Potent and Selective H3-Receptor Antagonists: Synthesis, Capillary Electrophoresis, and in Vitro and Oral in Vivo Activityâ€. Journal of Medicinal Chemistry, 1999, 42, 593-600.	6.4	26
316	Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Research, 1998, 793, 279-288.	2.2	140
317	Development of FUB 181, a Selective Histamine H3-Receptor Antagonist of High Oralin Vivo Potency with 4-(?gv-(Arylalkyloxy)alkyl)-1H-imidazole Structure. Archiv Der Pharmazie, 1998, 331, 211-218.	4.1	26
318	Improvement by FUB 181, a novel histamine H3-receptor antagonist, of learning and memory in the elevated plus-maze test in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 508-513.	3.0	66
319	Ciproxifan and chemically related compounds are highly potent and selective histamine H3-receptor antagonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 623-627.	3.0	28
320	General construction pattern of histamine H3-receptor antagonists: Change of a paradigm. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2011-2016.	2.2	18
321	4-Alkynylphenyl Imidazolylpropyl Ethers as Selective Histamine H3-Receptor Antagonists with High Oral Central Nervous System Activity. Journal of Medicinal Chemistry, 1998, 41, 4171-4176.	6.4	25
322	Medicinal chemistry of histamine H3 receptor agonists. Pharmacochemistry Library, 1998, 30, 175-196.	0.1	3
323	Development of a binding site model for histamine H3-receptor agonists. Die Pharmazie, 1998, 53, 433-7.	0.5	7
324	Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. Journal of Pharmacology and Experimental Therapeutics, 1998, 287, 658-66.	2.5	191

#	Article	IF	CITATIONS
325	Binding of histamine H ₃ â€receptor antagonists to hematopoietic progenitor cells. FEBS Letters, 1997, 404, 289-293.	2.8	12
326	Iododestannylation: an improved synthesis of [125I]iodoproxyfan, a specific radioligand of the histamine H3 receptor. Journal of Labelled Compounds and Radiopharmaceuticals, 1997, 39, 601-606.	1.0	16
327	Bioavailability, antinociceptive and antiinflammatory properties of BP 2-94, a histamine H3 receptor agonist prodrug. Journal of Pharmacology and Experimental Therapeutics, 1997, 281, 1085-94.	2.5	46
328	Search for novel leads for histamine H3-receptor antagonists: amine derivatives. Die Pharmazie, 1997, 52, 419-23.	0.5	5
329	Search for novel leads for histamine H3-receptor antagonists: oxygen-containing derivatives. Die Pharmazie, 1997, 52, 495-500.	0.5	6
330	[125I]Iodoproxyfan and Related Compounds:Â A Reversible Radioligand and Novel Classes of Antagonists with High Affinity and Selectivity for the Histamine H3Receptorâ€. Journal of Medicinal Chemistry, 1996, 39, 1220-1226.	6.4	67
331	Novel Carbamates as Potent Histamine H3Receptor Antagonists with Highin Vitroand Oralin VivoActivityâ€,⊥. Journal of Medicinal Chemistry, 1996, 39, 1157-1163.	6.4	63
332	New Potent Azomethine Prodrugs of the Histamine H3-Receptor Agonist (R)-α-Methylhistamine Containing a Heteroarylphenyl Partial Structure. Archiv Der Pharmazie, 1996, 329, 209-215.	4.1	6
333	Novel Histamine H3-Receptor Antagonists with Benzyl Ether Structure or Related Moieties: Synthesis and Structure-Activity Relationships. Archiv Der Pharmazie, 1996, 329, 379-385.	4.1	15
334	Diphenylmethyl ethers: synthesis and histamine H3-receptor antagonist in vitro and in vivo activity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2013-2018.	2.2	19
335	Potencies of antagonists chemically related to iodoproxyfan at histamine H3 receptors in mouse brain cortex and guinea-pig ileum: evidence for H3 receptor heterogeneity?. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 482-8.	3.0	32
336	Structure-activity relationships of novel azomethine prodrugs of the histamine H3-receptor agonist (R)-alpha-methylhistamine: from alkylaryl to substituted diaryl derivatives. Die Pharmazie, 1996, 51, 720-6.	0.5	15
337	Azines and Diazines as Potential Histamine H3-Receptor Antagonists. Archiv Der Pharmazie, 1995, 328, 445-450.	4.1	17
338	Synthesis and histamine H3-receptor agonist activity of mono- and dialkyl-substituted histamine derivatives. European Journal of Medicinal Chemistry, 1995, 30, 219-225.	5.5	4
339	Computer-Assisted Analysis of Histamine H2âÂ^Â' and H3-Receptor Agonists. QSAR and Combinatorial Science, 1995, 14, 121-125.	1.2	12
340	New potent histamine H3-receptor antagonists of the amide type. European Journal of Pharmaceutical Sciences, 1995, 3, 95-104.	4.0	10
341	Synthesis, X-ray Crystallography, and Pharmacokinetics of Novel Azomethine Prodrugs of (R)alphaMethylhistamine: Highly Potent and Selective Histamine H3 Receptor Agonists. Journal of Medicinal Chemistry, 1995, 38, 4070-4079.	6.4	45
342	Acylated and alkylated histamine derivatives as new histamine H3-receptor antagonists. European Journal of Medicinal Chemistry, 1994, 29, 695-700.	5.5	19

#	Article	IF	CITATIONS
343	Design of histamine H3-receptor agonists and antagonists. European Journal of Drug Metabolism and Pharmacokinetics, 1994, 19, 173-178.	1.6	9
344	Unsymmetrically substituted guanidines as potent histamine H3-receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2907-2912.	2.2	24
345	P84 novel potent histamine H3-receptor antagonists. European Journal of Pharmaceutical Sciences, 1994, 2, 139.	4.0	2
346	Novel histamine H ₃ receptor antagonists: affinities in an H ₃ receptor binding assay and potencies in two functional H ₃ receptor models. British Journal of Pharmacology, 1994, 112, 1043-1048.	5.4	47
347	[125I]iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. Journal of Pharmacology and Experimental Therapeutics, 1994, 271, 452-9.	2.5	103
348	Histamine H3-receptor activation inhibits acetylcholine release from the guinea pig myenteric plexus. Agents and Actions, 1991, 33, 167-169.	0.7	14
349	The Histamine H3-Receptor: Pharmacology, Roles and Clinical Implications Studied with Agonists. , 1991, 33, 55-67.		13
350	Autoreceptors and Heteroreceptors Evidenced by Histamine H3 Receptor Ligands. , 1991, , 67-70.		2
351	Survey of New, Small-Molecule Isatin-Based Oxindole Hybrids as Multi-Targeted Drugs for the Treatment of Alzheimer's Disease. Synthesis, 0, , .	2.3	4