Aanlian Pan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8777213/aanlian-pan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 14,251 105 330 h-index g-index citations papers 6.67 17,075 352 9.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
330	Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. <i>Applied Physics Letters</i> , 2022 , 120, 053107	3.4	4
329	A hostguest self-assembly strategy to enhance Electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. <i>Chemical Engineering Journal</i> , 2022 , 430, 132880	14.7	7
328	Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS Monolayers <i>Nano Letters</i> , 2022 ,	11.5	3
327	Infrared photodetector based on 2D monoclinic gold phosphide nanosheets yielded from one-step chemical vapor transport deposition. <i>Applied Physics Letters</i> , 2022 , 120, 131104	3.4	
326	Strong interfacial coupling in vertical WSe2/WS2 heterostructure for high performance photodetection. <i>Applied Physics Letters</i> , 2022 , 120, 181108	3.4	O
325	Gallium doping-assisted giant photoluminescence enhancement of monolayer MoS2 grown by chemical vapor deposition. <i>Applied Physics Letters</i> , 2022 , 120, 221902	3.4	0
324	Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. <i>Light: Science and Applications</i> , 2022 , 11,	16.7	7
323	Electrically switchable valley polarization, spin/valley filter, and valve effects in transition-metal dichalcogenide monolayers interfaced with two-dimensional ferromagnetic semiconductors. <i>Physical Review B</i> , 2021 , 104,	3.3	3
322	Enhancing circular polarization of photoluminescence of two-dimensional Ruddlesden B opper perovskites by constructing van der Waals heterostructures. <i>Applied Physics Letters</i> , 2021 , 119, 151101	3.4	1
321	Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting. <i>Applied Physics Letters</i> , 2021 , 118, 093901	3.4	5
320	Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. <i>Light: Science and Applications</i> , 2021 , 10, 60	16.7	9
319	High-Throughput One-Photon Excitation Pathway in 0D/3D Heterojunctions for Visible-Light Driven Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2021 , 31, 2100816	15.6	40
318	Efficient control of emission and carrier polarity in WS2 monolayer by indium doping. <i>Science China Materials</i> , 2021 , 64, 1449-1456	7.1	6
317	An Efficient Deep-Subwavelength Second Harmonic Nanoantenna Based on Surface Plasmon-Coupled Dilute Nitride GaNP Nanowires. <i>Nano Letters</i> , 2021 , 21, 3426-3434	11.5	2
316	Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. <i>Light: Science and Applications</i> , 2021 , 10, 72	16.7	36
315	Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. <i>Nature Electronics</i> , 2021 , 4, 342-347	28.4	36
314	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. <i>Advanced Science</i> , 2021 , 8, e2100569	13.6	37

(2021-2021)

313	Liquid-Metal-Assisted Growth of Vertical GaSe/MoS p-n Heterojunctions for Sensitive Self-Driven Photodetectors. <i>ACS Nano</i> , 2021 , 15, 10039-10047	16.7	23
312	One-Photon Excitation Pathway: High-Throughput One-Photon Excitation Pathway in 0D/3D Heterojunctions for Visible-Light Driven Hydrogen Evolution (Adv. Funct. Mater. 18/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170125	15.6	
311	Double-Gate MoS Field-Effect Transistors with Full-Range Tunable Threshold Voltage for Multifunctional Logic Circuits. <i>Advanced Materials</i> , 2021 , 33, e2101036	24	10
310	Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures. <i>Advanced Science</i> , 2021 , 8, e2100847	13.6	5
309	Robust and High Photoluminescence in WS2 Monolayer through In Situ Defect Engineering. <i>Advanced Functional Materials</i> , 2021 , 31, 2105339	15.6	7
308	Bottom-up fabrication of semiconducting 2D coordination nanosheets for versatile bioimaging and photodetecting applications. <i>Materials Advances</i> , 2021 , 2, 5189-5194	3.3	1
307	Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. <i>Advanced Materials</i> , 2021 , 33, e2006006	24	30
306	Moir Buperlattices and related moir excitons in twisted van der Waals heterostructures. <i>Chemical Society Reviews</i> , 2021 , 50, 6401-6422	58.5	9
305	Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO Electroreduction. <i>Nano Letters</i> , 2021 , 21, 1003-1010	11.5	15
304	A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. <i>Nanoscale</i> , 2021 , 13, 9177-9184	7.7	3
303	Controlled growth of SnSe/MoS2 vertical pl heterojunction for optoelectronic applications. <i>Nano Futures</i> , 2021 , 5, 015002	3.6	4
302	Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. <i>Opto-Electronic Advances</i> , 2021 , 4, 210017-210017	6.5	5
301	Giant nonlinear optical activity in two-dimensional palladium diselenide. <i>Nature Communications</i> , 2021 , 12, 1083	17.4	26
300	Revealing the many-body interactions and valley-polarization behavior in Re-doped MoS2 monolayers. <i>Applied Physics Letters</i> , 2021 , 118, 113101	3.4	2
299	Recent Advances in Two-Dimensional Heterostructures: From Band Alignment Engineering to Advanced Optoelectronic Applications. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001174	6.4	12
298	Orbital-Angular-Momentum-Controlled Hybrid Nanowire Circuit. <i>Nano Letters</i> , 2021 , 21, 6220-6227	11.5	3
297	Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams*. <i>Chinese Physics B</i> , 2021 , 30, 087802	1.2	O
296	Strong Second- and Third-Harmonic Generation in 1D Chiral Hybrid Bismuth Halides. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16095-16104	16.4	15

295	Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation. <i>Journal of Materials Science and Technology</i> , 2021 , 86, 210-218	9.1	6
294	Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures*. <i>Chinese Physics B</i> , 2021 , 30, 097601	1.2	1
293	Strain-controlled synthesis of ultrathin hexagonal GaTe/MoS heterostructure for sensitive photodetection. <i>IScience</i> , 2021 , 24, 103031	6.1	О
292	Indirect to direct band gap crossover in two-dimensional WS2(1 \blacksquare)Se2x alloys. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	12
291	Generalized Synthetic Strategy for Amorphous Transition Metal Oxides-Based 2D Heterojunctions with Superb Photocatalytic Hydrogen and Oxygen Evolution. <i>Advanced Functional Materials</i> , 2021 , 31, 2009230	15.6	45
290	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. <i>Nature Communications</i> , 2020 , 11, 6328	17.4	29
289	Carrier Transport Across a CdSxSe1⊠ Lateral Heterojunction Visualized by Ultrafast Microscopy. Journal of Physical Chemistry C, 2020 , 124, 11325-11332	3.8	7
288	Twist-angle-dependent interlayer exciton diffusion in WS-WSe heterobilayers. <i>Nature Materials</i> , 2020 , 19, 617-623	27	85
287	Photocurrent detection of the orbital angular momentum of light. Science, 2020, 368, 763-767	33.3	58
286	Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. <i>Chemical Engineering Journal</i> , 2020 , 397, 125470	14.7	38
285	Near-Unity Polarization of Valley-Dependent Second-Harmonic Generation in Stacked TMDC Layers and Heterostructures at Room Temperature. <i>Advanced Materials</i> , 2020 , 32, e1908061	24	17
284	Wavelength-Tunable Mid-Infrared Lasing from Black Phosphorus Nanosheets. <i>Advanced Materials</i> , 2020 , 32, e1808319	24	34
283	Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. <i>Nature Communications</i> , 2020 , 11, 1330	17.4	56
282	Mechanism of Extreme Optical Nonlinearities in Spiral WS above the Bandgap. <i>Nano Letters</i> , 2020 , 20, 2667-2673	11.5	14
281	Contact and injection engineering for low SS reconfigurable FETs and high gain complementary inverters. <i>Science Bulletin</i> , 2020 , 65, 2007-2013	10.6	6
280	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. <i>Science China Materials</i> , 2020 , 63, 1503-1509	7.1	7
279	Epitaxial synthesis of ultrathin EnSe/MoS heterostructures with high visible/near-infrared photoresponse. <i>Nanoscale</i> , 2020 , 12, 6480-6488	7.7	21
278	Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Efficient Hydrogen Evolution. <i>Nano-Micro Letters</i> , 2020 , 12, 52	19.5	24

(2020-2020)

277	An Electrically Controlled Wavelength-Tunable Nanoribbon Laser. ACS Nano, 2020, 14, 3397-3404	16.7	17
276	Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. <i>Nature Communications</i> , 2020 , 11, 329	17.4	30
275	Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single CsPbBr3 Nanowires at Room Temperature. <i>Physical Review Applied</i> , 2020 , 13,	4.3	13
274	Wavelength-Tunable Interlayer Exciton Emission at the Near-Infrared Region in van der Waals Semiconductor Heterostructures. <i>Nano Letters</i> , 2020 , 20, 3361-3368	11.5	17
273	Room temperature exciton-polaritons in high-quality 2D Ruddlesden Popper perovskites (BA)2(MA)n-1PbnI3n+1 (n = 3, 4). <i>Applied Physics Letters</i> , 2020 , 117, 221107	3.4	2
272	Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials. <i>Research</i> , 2020 , 2020, 5464258	7.8	9
271	Two ultra-stable novel allotropes of tellurium few-layers. <i>Chinese Physics B</i> , 2020 , 29, 097103	1.2	2
270	A Noble Metal Dichalcogenide for High-Performance Field-Effect Transistors and Broadband Photodetectors. <i>Advanced Functional Materials</i> , 2020 , 30, 1907945	15.6	45
269	Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation. <i>Nanoscale</i> , 2020 , 12, 3135-	37475	24
268	Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. <i>Science Bulletin</i> , 2020 , 65, 293-299	10.6	20
267	Large-Scale Growth of Ultrathin Low-Dimensional Perovskite Nanosheets for High-Detectivity Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 2884-2891	9.5	16
266	Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1 lk)Se2x/SnS2 heterostructures. <i>Informal</i> DMaterilly, 2020 , 2, 752-760	23.1	17
265	Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS Strongly Coupled with Plasmonic Lattices. <i>Nano Letters</i> , 2020 , 20, 790-798	11.5	12
264	CVD growth of perovskite/graphene films for high-performance flexible image sensor. <i>Science Bulletin</i> , 2020 , 65, 343-349	10.6	39
263	Rubidium Doping to Enhance Carrier Transport in CsPbBr Single Crystals for High-Performance X-Ray Detection. <i>ACS Applied Materials & Detection (Materials & Det</i>	9.5	47
262	Effects of the substrate-surface reconstruction and orientation on the spin valley polarization in MoTe2/EuO. <i>Physical Review B</i> , 2020 , 102,	3.3	4
261	Generation of helical topological exciton-polaritons. <i>Science</i> , 2020 , 370, 600-604	33.3	39
260	General Synthesis of Nanoporous 2D Metal Compounds with 3D Bicontinous Structure. <i>Advanced Materials</i> , 2020 , 32, e2004055	24	7

259	Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode. <i>Science China Materials</i> , 2020 , 63, 1570-1578	7.1	5
258	Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor Bilayers for a Tunable Spectral Response. <i>ACS Applied Materials & Discourt Acceptage (Note: Acceptage</i>	1 ^{9.5}	7
257	Twist Angle-Dependent Optical Responses in Controllably Grown WS2 Vertical Homojunctions. <i>Chemistry of Materials</i> , 2020 , 32, 9721-9729	9.6	8
256	Seamlessly Splicing Metallic Sn Mo S at MoS Edge for Enhanced Photoelectrocatalytic Performance in Microreactor. <i>Advanced Science</i> , 2020 , 7, 2002172	13.6	14
255	Enhanced Trion Emission and Carrier Dynamics in Monolayer WS2 Coupled with Plasmonic Nanocavity. <i>Advanced Optical Materials</i> , 2020 , 8, 2001147	8.1	15
254	Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13976-13981	7.1	6
253	Triphenylamine P olystyrene Blends for Perovskite Solar Cells with Simultaneous Energy Loss Suppression and Stability Improvement. <i>Solar Rrl</i> , 2020 , 4, 2000490	7.1	1
252	Room temperature near unity spin polarization in 2D Van der Waals heterostructures. <i>Nature Communications</i> , 2020 , 11, 4442	17.4	20
251	Growth of CdSe/MoS2 vertical heterostructures for fast visible-wavelength photodetectors. Journal of Alloys and Compounds, 2020 , 815, 152309	5.7	20
250	High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. <i>Nano Research</i> , 2020 , 13, 1053-1059	10	33
249	Trap-Mediated Energy Transfer in Er-Doped Cesium Lead Halide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3320-3326	6.4	2
248	Unconventional p-d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18083-18090	16.4	107
247	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. <i>Nano Letters</i> , 2019 , 19, 7217-7225	11.5	23
246	Room-temperature high-performance CsPbBr perovskite tetrahedral microlasers. <i>Nanoscale</i> , 2019 , 11, 2393-2400	7.7	29
245	Controlled Vapor Growth and Nonlinear Optical Applications of Large-Area 3R Phase WS2 and WSe2 Atomic Layers. <i>Advanced Functional Materials</i> , 2019 , 29, 1806874	15.6	59
244	Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region. <i>Nano Letters</i> , 2019 , 19, 1204-1209	11.5	10
243	Trion-Induced Distinct Transient Behavior and Stokes Shift in WS Monolayers. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3763-3772	6.4	11
242	Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. <i>ACS Nano</i> , 2019 , 13, 7996-8003	16.7	45

2	241	Phonon-Assisted Electro-Optical Switches and Logic Gates Based on Semiconductor Nanostructures. <i>Advanced Materials</i> , 2019 , 31, e1901263	24	13
2	240	Nonvolatile MoTe p-n Diodes for Optoelectronic Logics. <i>ACS Nano</i> , 2019 , 13, 7216-7222	16.7	29
2	239	Magneto-spectroscopy of exciton Rydberg states in a CVD grown WSe2 monolayer. <i>Applied Physics Letters</i> , 2019 , 114, 232104	3.4	11
2	238	Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. <i>Nano Research</i> , 2019 , 12, 1894-1899	10	61
2	2 37	Multicolor Semiconductor Lasers. <i>Advanced Optical Materials</i> , 2019 , 7, 1900071	8.1	18
2	236	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1806671	24	85
2	235	Rational Kinetics Control toward Universal Growth of 2D Vertically Stacked Heterostructures. <i>Advanced Materials</i> , 2019 , 31, e1901351	24	53
2	234	Optically manipulated nanomechanics of semiconductor nanowires. <i>Chinese Physics B</i> , 2019 , 28, 054204	1.2	4
2	233	Vapor growth of CdS nanowires/WS nanosheet heterostructures with sensitive photodetections. <i>Nanotechnology</i> , 2019 , 30, 345603	3.4	8
2	232	Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 321-328	21.8	76
2	231	Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 181-194	21.8	155
2	230	Doping-Induced Hydrogen-Bond Engineering in Polymeric Carbon Nitride To Significantly Boost the Photocatalytic H Evolution Performance. <i>ACS Applied Materials & Description of the Photocatalytic Head of the Pho</i>	9.5	46
2	229	Polar-Induced Selective Epitaxial Growth of Multijunction Nanoribbons for High-Performance Optoelectronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 15813-15820	9.5	5
2	228	Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX3; X = Br, I) Nanowires. <i>ACS Energy Letters</i> , 2019 , 4, 1045-1052	20.1	51
2	227	Ultra-long distance carrier transportation in bandgap-graded CdSSe nanowire waveguides. <i>Nanoscale</i> , 2019 , 11, 8494-8501	7.7	10
2	226	Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. <i>Science Bulletin</i> , 2019 , 64, 698-704	10.6	20
2	225	Near-infrared photodetection based on erbium chloride borate nanobelts. <i>Applied Physics Express</i> , 2019 , 12, 035001	2.4	3
2	224	High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. <i>Materials Horizons</i> , 2019 , 6, 1474-1480	14.4	30

223	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5488-5496	7.1	16
222	Protonated supramolecular complex-induced porous graphitic carbon nitride nanosheets as bifunctional catalyst for water oxidation and organic pollutant degradation. <i>Journal of Materials Science</i> , 2019 , 54, 7637-7650	4.3	9
221	Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors. <i>Nano Letters</i> , 2019 , 19, 5920-5929	11.5	41
220	Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology. <i>Nanoscale</i> , 2019 , 11, 16393-16405	7.7	33
219	WO-WS Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11754-11758	16.4	29
218	Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. <i>ACS Central Science</i> , 2019 , 5, 1377-1386	16.8	80
217	Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	22
216	Surface functionalized 3D carbon fiber boosts the lithium storage behaviour of transition metal oxide nanowires via strong electronic interaction and tunable adsorption energy. <i>Nanoscale Horizons</i> , 2019 , 4, 1402-1410	10.8	15
215	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. <i>Journal Physics D: Applied Physics</i> , 2019 , 53, 015502	3	23
214	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. <i>Nature Communications</i> , 2019 , 10, 4663	17.4	127
213	Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe/BiTe Heterojunctions. <i>ACS Nano</i> , 2019 , 13, 13573-13580	16.7	89
212	Carrier-Funneling-Induced Efficient Energy Transfer in CdSxSe1⊠ Heterostructure Microplates. <i>ACS Energy Letters</i> , 2019 , 4, 2796-2804	20.1	12
211	Cavity Engineering of Photon-Phonon Interactions in Si Nanocavities. <i>Nano Letters</i> , 2019 , 19, 7950-7956	11.5	4
210	Enhanced luminescent intensity in a free-standing erbium silicate microplate. <i>Journal of Modern Optics</i> , 2019 , 66, 1951-1955	1.1	
209	Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties. <i>Nano Research</i> , 2019 , 12, 3123-3128	10	19
208	High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. <i>ACS Photonics</i> , 2019 , 6, 793-801	6.3	26
207	Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 pl heterojunctions for high performance optoelectronics. <i>Nano Energy</i> , 2019 , 59, 66-74	17.1	75
206	Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors. <i>Advanced Science</i> , 2019 , 6, 1802204	13.6	57

(2018-2019)

205	Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. <i>Light: Science and Applications</i> , 2019 , 8, 106	16.7	100
204	Flexible Photodetector Arrays Based on Patterned CH NH PbI Cl Perovskite Film for Real-Time Photosensing and Imaging. <i>Advanced Materials</i> , 2019 , 31, e1805913	24	110
203	Focus on 2D material nanophotonics. <i>Nanotechnology</i> , 2019 , 30, 030201	3.4	2
202	How lasing happens in CsPbBr perovskite nanowires. <i>Nature Communications</i> , 2019 , 10, 265	17.4	118
201	Controlled Synthesis and Photonics Applications of Metal Halide Perovskite Nanowires. <i>Small Methods</i> , 2019 , 3, 1800294	12.8	30
200	Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 135501	3	9
199	Non-fullerene acceptors for large-open-circuit-voltage and high-efficiency organic solar cells. <i>Materials Today Nano</i> , 2018 , 1, 47-59	9.7	7
198	Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals. ACS Nano, 2018, 12, 4853-4860	16.7	64
197	Wavelength Selective Photodetectors Integrated on a Single Composition-Graded Semiconductor Nanowire. <i>Advanced Optical Materials</i> , 2018 , 6, 1800293	8.1	15
196	Facilein situsynthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 0755	03	28
195	Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging. <i>Nano Letters</i> , 2018 , 18, 3024-3031	11.5	29
194	Understanding the Different Exciton P lasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach. <i>ACS Photonics</i> , 2018 , 5, 192-204	6.3	20
193	Ultrahigh Quality Upconverted Single-Mode Lasing in Cesium Lead Bromide Spherical Microcavity. <i>Advanced Optical Materials</i> , 2018 , 6, 1800391	8.1	31
192	Continuous-wave lasing in halide perovskites. <i>Science China Materials</i> , 2018 , 61, 1243-1244	7.1	4
191	Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications. Advanced Optical Materials, 2018 , 6, 1800420	8.1	53
190	Band Alignment Engineering in Two-Dimensional Lateral Heterostructures. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11193-11197	16.4	85
189	High-Quality In-Plane Aligned CsPbX Perovskite Nanowire Lasers with Composition-Dependent Strong Exciton-Photon Coupling. <i>ACS Nano</i> , 2018 , 12, 6170-6178	16.7	147
188	Mesoporous g-CNINanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 5502-5510	1.3	13

187	Measuring the local mobility of graphene on semiconductors. <i>Physical Review Materials</i> , 2018 , 2,	3.2	1
186	Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11740-11748	7.1	30
185	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28065-28074	3.8	17
184	Space-Confined Synthesis of 2D All-Inorganic CsPbI3 Perovskite Nanosheets for Multiphoton-Pumped Lasing. <i>Advanced Optical Materials</i> , 2018 , 6, 1800879	8.1	46
183	Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15675-15683	16.4	65
182	Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. <i>Chemical Society Reviews</i> , 2018 , 47, 7504-7521	58.5	72
181	Temperature Difference Triggering Controlled Growth of All-Inorganic Perovskite Nanowire Arrays in Air. <i>Small</i> , 2018 , 14, e1803010	11	21
180	Active optical antennas driven by inelastic electron tunneling. <i>Nanophotonics</i> , 2018 , 7, 1503-1516	6.3	8
179	Controllable Growth and Formation Mechanisms of Dislocated WS Spirals. <i>Nano Letters</i> , 2018 , 18, 3885	-3893	62
178	Facile in situ construction of mediator-free direct Z-scheme g-C3N4/CeO2 heterojunctions with highly efficient photocatalytic activity. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 275302	3	80
177	Tin Nanoparticles E nhanced Optical Transportation in Branched CdS Nanowire Waveguides. <i>Advanced Optical Materials</i> , 2018 , 6, 1800305	8.1	12
176	Controllable Vapor Growth of Large-Area Aligned CdS Se Nanowires for Visible Range Integratable Photodetectors. <i>Nano-Micro Letters</i> , 2018 , 10, 58	19.5	16
175	Spatially composition-modulated two-dimensional WSSe nanosheets. <i>Nanoscale</i> , 2017 , 9, 4707-4712	7.7	32
174	Near Full-Composition-Range High-Quality GaAsSb Nanowires Grown by Molecular-Beam Epitaxy. <i>Nano Letters</i> , 2017 , 17, 622-630	11.5	57
173	Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS Nanosheets. <i>ACS Nano</i> , 2017 , 11, 4892-4898	16.7	79
172	Nonlinear photoluminescence in monolayer WS: parabolic emission and excitation fluence-dependent recombination dynamics. <i>Nanoscale</i> , 2017 , 9, 7235-7241	7.7	30
171	Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. <i>Nano Research</i> , 2017 , 10, 3385-3395	10	89
170	Two-Dimensional MoS2-Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. <i>Chemistry of Materials</i> , 2017 , 29, 5504-5512	9.6	99

(2016-2017)

169	Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7739-7745	7.1	45
168	Perovskite-Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Near-Infrared Telecommunication Band. <i>Advanced Materials</i> , 2017 , 29, 1604431	24	99
167	Two-Dimensional CHNHPbI Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Ap</i>	9.5	231
166	Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. <i>ACS Nano</i> , 2017 , 11, 1189-1195	16.7	199
165	Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. <i>Nano Energy</i> , 2017 , 32, 28-35	17.1	53
164	Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain. <i>Frontiers of Physics</i> , 2017 , 12, 1	3.7	4
163	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures via Layer-Selected Atomic Substitution. <i>ACS Nano</i> , 2017 , 11, 961-967	16.7	86
162	High-Performance Flexible Photodetectors based on High-Quality Perovskite Thin Films by a Vapor-Solution Method. <i>Advanced Materials</i> , 2017 , 29, 1703256	24	96
161	Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. <i>ACS Nano</i> , 2017 , 11, 10681-10688	16.7	168
160	Directional Growth of Ultralong CsPbBr Perovskite Nanowires for High-Performance Photodetectors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15592-15595	16.4	195
159	Second-harmonic generation in single CdSe nanowires by focused cylindrical vector beams. <i>Optics Letters</i> , 2017 , 42, 2623-2626	3	8
158	Direct Vapor Growth of Perovskite CsPbBr Nanoplate Electroluminescence Devices. <i>ACS Nano</i> , 2017 , 11, 9869-9876	16.7	96
157	Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO). <i>Journal of the American Chemical Society</i> , 2017 , 139, 13525-13532	16.4	147
156	Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 375101	3	23
155	Van der Waals epitaxial growth and optoelectronics of large-scale WSe/SnS vertical bilayer p-n junctions. <i>Nature Communications</i> , 2017 , 8, 1906	17.4	258
154	High on/off ratio photosensitive field effect transistors based on few layer SnS2. <i>Nanotechnology</i> , 2016 , 27, 34LT01	3.4	22
153	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. <i>ACS Nano</i> , 2016 , 10, 8474-81	16.7	73
152	Wang et´al. Reply. <i>Physical Review Letters</i> , 2016 , 117, 219702	7.4	1

151	Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. <i>Nano Energy</i> , 2016 , 30, 481-487	17.1	34
150	Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	12
149	Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals. <i>Journal of Physics and Chemistry of Solids</i> , 2016 , 98, 28-31	3.9	35
148	Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. <i>Nano-Micro Letters</i> , 2016 , 8, 29-35	19.5	71
147	Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. <i>Nano Letters</i> , 2016 , 16, 264-9	11.5	218
146	Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. <i>Nano Research</i> , 2016 , 9, 933-941	10	24
145	Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes. <i>Applied Surface Science</i> , 2016 , 370, 427-432	6.7	32
144	Nanolaser arrays based on individual waved CdS nanoribbons. <i>Laser and Photonics Reviews</i> , 2016 , 10, 458-464	8.3	42
143	Facile one-step in-situ synthesis of type-II CeO2/CeF3 composite with tunable morphology and photocatalytic activity. <i>Ceramics International</i> , 2016 , 42, 16374-16381	5.1	11
142	Synthesis and optoelectronic properties of quaternary GaInAsSb alloy nanosheets. <i>Nanotechnology</i> , 2016 , 27, 505602	3.4	6
141	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. <i>Nano Letters</i> , 2016 , 16, 6416-6424	11.5	90
140	Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. <i>Laser and Photonics Reviews</i> , 2016 , 10, 835-842	8.3	14
139	Second harmonic generation and waveguide properties in perovskite Na0.5Bi0.5TiO3 nanowires. <i>Optics Letters</i> , 2016 , 41, 3803-5	3	5
138	Er3+-doped Na0.5Bi0.5TiO3 ferroelectric thin films with enhanced electrical properties and strong green up-conversion luminescence. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 119, 937-9	940 ⁶	9
137	Few-layer WO3 nanosheets for high-performance UV-photodetectors. <i>Materials Letters</i> , 2015 , 148, 184	-13837	35
136	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5933-5939	7.1	12
135	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. <i>Physical Review Letters</i> , 2015 , 115, 027403	7.4	38
134	Optical waveguide beam splitters based on hybrid metaldielectriceemiconductor nanostructures. Optics Communications, 2015, 354, 168-173	2	1

133	Lateral Growth of Composition Graded Atomic Layer MoS(2(1-x))Se(2x) Nanosheets. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5284-7	16.4	155
132	Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. <i>Chemical Society Reviews</i> , 2015 , 44, 8859-76	58.5	719
131	Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	1
130	Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 121, 773-777	2.6	9
129	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays (Small 20/2015). <i>Small</i> , 2015 , 11, 2346-2346	11	3
128	Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect. <i>Advanced Materials</i> , 2015 , 27, 4447-4453	24	65
127	Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. <i>Science Bulletin</i> , 2015 , 60, 1674-1679	10.6	13
126	Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31h. <i>Semiconductor Science and Technology</i> , 2015 , 30, 105033	1.8	40
125	Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C3N4 and Highly Reduced Graphene Oxide Composite: The Role of Oxygen. <i>Chemistry of Materials</i> , 2015 , 27, 1612-1621	9.6	219
124	Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. <i>Small</i> , 2015 , 11, 2392-8	11	292
123	Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity. <i>Materials Letters</i> , 2014 , 116, 209-211	3.3	43
122	Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A, 2014 , 2, 1750-1756	13	226
121	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. <i>Nature Nanotechnology</i> , 2014 , 9, 1024-30	28.7	858
120	Room-temperature near-infrared photodetectors based on single heterojunction nanowires. <i>Nano Letters</i> , 2014 , 14, 694-8	11.5	118
119	Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. <i>Advanced Materials</i> , 2014 , 26, 2844-9	24	65
118	Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3756-9	16.4	362
117	Gradient index plasmonic ring resonator with high extinction ratio. <i>Optics Communications</i> , 2014 , 312, 280-283	2	7
116	Optical sensor based on a single CdS nanobelt. <i>Sensors</i> , 2014 , 14, 7332-41	3.8	10

115	Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays. <i>Journal of Applied Physics</i> , 2014 , 115, 224308	2.5	3
114	Band-selective infrared photodetectors with complete-composition-range InAs(x)P(1-x) alloy nanowires. <i>Advanced Materials</i> , 2014 , 26, 7444-9	24	64
113	Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. <i>Nano-Micro Letters</i> , 2014 , 6, 301-306	19.5	20
112	The study on crystal defects-involved energy transfer process of Eu3+ doped ZnO lattice. <i>Materials Letters</i> , 2014 , 129, 65-67	3.3	20
111	Microphotoluminescence of individual ZnSe nanoribbons. <i>Materials Letters</i> , 2014 , 129, 118-121	3.3	15
110	Dilute tin-doped CdS nanowires for low-loss optical waveguiding. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4391	7.1	6
109	Surface plasmon resonance enhanced band-edge emission of CdSBiO2 coreBhell nanowires with gold nanoparticles attached. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 566-571	7.1	20
108	Bandgap broadly tunable GaZnSeAs alloy nanowires. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 291	2 <i>3</i> 66	11
107	Large photoluminescence redshift of ZnTe nanostructures: The effect of twin structures. <i>Chemical Physics Letters</i> , 2013 , 576, 26-30	2.5	8
106	Ag3PO4Semiconductor Photocatalyst: Possibilities and Challenges. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-8	3.2	24
105	Template-free synthesis and photocatalytic activity of CdS nanorings. <i>Materials Letters</i> , 2013 , 100, 141-	1 <u>4.4</u>	13
104	Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires. <i>Nano Letters</i> , 2013 , 13, 1251-6	11.5	62
103	Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. <i>Nanotechnology</i> , 2013 , 24, 055201	3.4	21
102	Complete composition tunability of Cd1\(\mathbb{Z}\)TxTe alloy nanostructures along a single substrate. <i>Materials Letters</i> , 2013 , 105, 90-94	3.3	7
101	Fabrication and optical waveguide of Sn-catalyzed CdSe microstructures. <i>Solid State Communications</i> , 2013 , 167, 31-35	1.6	3
100	Modulated exciton-plasmon interactions in Au-SiO2-CdTe composite nanoparticles. <i>Optics Express</i> , 2013 , 21, 11095-100	3.3	13
99	Plasmonic amplification with ultra-high optical gain at room temperature. <i>Scientific Reports</i> , 2013 , 3, 1967	4.9	50
98	Synthesis and optical properties of InP quantum dot/nanowire heterostructures. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1898-1902	1.6	8

(2011-2013)

97	Structure by Raman Scattering and Surface Photovoltage Spectroscopy. <i>Acta Chimica Sinica</i> , 2013 , 71, 634	3.3	3
96	Modulational instability and gap solitons in periodic ferromagnetic films. <i>European Physical Journal B</i> , 2012 , 85, 1	1.2	7
95	Composition and bandgap-graded semiconductor alloy nanowires. <i>Advanced Materials</i> , 2012 , 24, 13-33	24	99
94	Enhanced visible-light photoactivity of La-doped ZnS thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 108, 895-900	2.6	29
93	Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12394-7	16.4	96
92	Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. <i>Nano Letters</i> , 2012 , 12, 5003-7	11.5	76
91	Synthesis and optical characterizations of chain-like Si@SiSe2 nanowire heterostructures. <i>Nanoscale</i> , 2012 , 4, 1481-5	7.7	4
90	Orientation-controlled synthesis and magnetism of single crystalline Co nanowires. <i>Journal of Magnetism and Magnetic Materials</i> , 2012 , 324, 4043-4047	2.8	8
89	Heteroepitaxial growth of GaSb nanotrees with an ultra-low reflectivity in a broad spectral range. <i>Nano Letters</i> , 2012 , 12, 1799-805	11.5	36
88	Effects of contact shape on ballistic phonon transport in semiconductor nanowires. <i>Current Applied Physics</i> , 2012 , 12, 437-442	2.6	
87	Asymmetric light propagation in composition-graded semiconductor nanowires. <i>Scientific Reports</i> , 2012 , 2, 820	4.9	54
86	Visible whispering-gallery modes in ZnO microwires with varied cross sections. <i>Journal of Applied Physics</i> , 2011 , 110, 033101	2.5	16
85	Spatial bandgap engineering along single alloy nanowires. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2037-9	16.4	91
84	Color-tunable periodic spatial emission of alloyed CdS_1-xSe_x/ Sn: CdS_1-xSe_x superlattice microwires. <i>Optical Materials Express</i> , 2011 , 1, 1185	2.6	5
83	Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength. <i>Optical Materials Express</i> , 2011 , 1, 1202	2.6	24
82	Semiconductor Alloy Nanowires and Nanobelts With Tunable Optical Properties. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 808-818	3.8	6
81	Effect of Gaussian acoustic nanocavities in a narrow constriction on ballistic phonon transmission. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 104, 635-642	2.6	1
80	Trapping of surface plasmon polaritons in a multiple-teeth-shaped waveguide at visible wavelengths. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 103, 883-887	1.9	7

79	Trapping of surface-plasmon polaritons in a subwavelength cut. <i>Optics Communications</i> , 2011 , 284, 153	8-1255	5
78	Ferromagnetic and metallic properties of the semihydrogenated GaN sheet. <i>Physica Status Solidi</i> (B): Basic Research, 2011 , 248, 1442-1445	1.3	23
77	Atomic layer deposition assisted template approach for electrochemical synthesis of Au crescent-shaped half-nanotubes. <i>ACS Nano</i> , 2011 , 5, 788-94	16.7	30
76	Single-Crystalline Cu4Bi4S9Nanoribbons: Facile Synthesis, Growth Mechanism, and Surface Photovoltaic Properties. <i>Chemistry of Materials</i> , 2011 , 23, 1299-1305	9.6	52
75	On-nanowire spatial band gap design for white light emission. Nano Letters, 2011, 11, 5085-9	11.5	72
74	Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 1415-1421	3.8	29
73	Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. <i>Optics Communications</i> , 2011 , 284, 471-475	2	15
72	Ballistic phonon transport through a Fibonacci array of acoustic nanocavities in a narrow constriction. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2011 , 375, 2000-2006	2.3	1
71	Ballistic phonon transmission in quasiperiodic acoustic nanocavities. <i>Journal of Applied Physics</i> , 2011 , 109, 084310	2.5	3
70	Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers. <i>Applied Physics Letters</i> , 2011 , 99, 263101	3.4	22
69	Phase diagram of magnetic multilayers with tilted dual spin torques. <i>Journal of Applied Physics</i> , 2011 , 109, 033905	2.5	16
68	BALLISTIC PHONON TRANSPORT THROUGH GAUSSIAN ACOUSTIC NANOCAVITIES. <i>Modern Physics Letters B</i> , 2011 , 25, 1631-1642	1.6	3
67	Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. <i>Physical Review B</i> , 2010 , 82,	3.3	16
66	Mechanically and electronically controlled molecular switch behavior in a compound molecular device. <i>Applied Physics Letters</i> , 2010 , 97, 103506	3.4	13
65	Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOxNanowires. <i>Journal of Nanomaterials</i> , 2010 , 2010, 1-6	3.2	4
64	Hierarchical SnO2 Nanostructures: Linear Assembly of Nanorods on the Nanowire Backbones. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1844-1848	3.8	31
63	Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. <i>ACS Nano</i> , 2010 , 4, 671-80	16.7	116
62	Current-driven magnetization dynamics in magnetic trilayers with a tilted spin polarizer. <i>European Physical Journal B</i> , 2010 , 73, 417-421	1.2	26

61	Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires. Nano Research, 2010, 3, 326	6- 3 8	32
60	TiO2 nanowires sensitized with CdS quantum dots and the surface photovoltage properties. <i>Materials Letters</i> , 2010 , 64, 1688-1690	3.3	21
59	Facile preparation of TiO2 nanostructures by direct annealing of the Ti foil. <i>Materials Letters</i> , 2010 , 64, 2392-2394	3.3	5
58	Negative differential resistance in polymer molecular devices modulated with molecular length. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2010 , 374, 3857-3862	2.3	15
57	Tilted spin torque-driven ferromagnetic resonance in a perpendicular-analyzer magnetic trilayer. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 2264-2267	2.8	11
56	Magnetic properties in nitrogen-doped CeO2 from first-principles calculations. <i>Physica B: Condensed Matter</i> , 2010 , 405, 4858-4862	2.8	7
55	Electronic structure and magnetic properties in Nitrogen-doped from density functional calculations. <i>Solid State Communications</i> , 2010 , 150, 852-856	1.6	10
54	Ab initio studies of half-metallic ferromagnetism in carbon-doped. <i>Solid State Communications</i> , 2010 , 150, 923-927	1.6	13
53	Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. <i>Small</i> , 2010 , 6, 910-4	11	51
52	Spatially composition-graded alloy semiconductor nanowires and wavelength specific lateral-multijunction full-spectrum solar cells 2009 ,		8
51	Broadband coherent emission observed in polycrystalline CdSSe nanowires under high excitation. Journal of Physics Condensed Matter, 2009 , 21, 375302	1.8	3
50	Ordered CdS micro/nanostructures on CdSe nanostructures. <i>Nanotechnology</i> , 2009 , 20, 125601	3.4	12
49	Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy 2009 , 52, 26-30		
48	Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9502-3	16.4	70
47	Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. <i>Nano Letters</i> , 2009 , 9, 784-8	11.5	180
46	Structural stability and Raman scattering of ZnSe nanoribbons under high pressure. <i>Journal of Alloys and Compounds</i> , 2009 , 480, 798-801	5.7	25
45	Comparison of the optical waveguide behaviors of Se-doped and undoped CdS nanoribbons by using near-field optical microscopy. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 978-81	1.3	2
44	Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. <i>Nano Letters</i> , 2008 , 8, 114-8	11.5	106

43	Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9253-9260	3.8	45
42	Si-CdSSe core/shell nanowires with continuously tunable light emission. <i>Nano Letters</i> , 2008 , 8, 3413-7	11.5	55
41	One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 135301	3	18
40	Observation of delayed fluorescence in CdSxSe1\(\text{l} \) nanobelts by femtosecond time-resolved fluorescence spectroscopy. <i>Applied Physics Letters</i> , 2008 , 92, 032102	3.4	15
39	Theory of ferromagnetic resonance in magnetic trilayers with a tilted spin polarizer. <i>Physical Review B</i> , 2008 , 78,	3.3	28
38	Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17546-17553	3.8	29
37	Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 7655-7660	3.8	59
36	Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts. Journal of Physical Chemistry C, 2007 , 111, 14253-14256	3.8	32
35	Color-changeable optical transport through Se-doped CdS 1D nanostructures. <i>Nano Letters</i> , 2007 , 7, 2970-5	11.5	63
34	Stimulated emission from trapped excitons in SnO2 nanowires. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2007 , 39, 223-229	3	28
33	The optical properties of ZnO sheets electrodeposited on ITO glass. <i>Materials Letters</i> , 2007 , 61, 2000-2	093,	49
32	A simple and cheap way to produce porous ZnO ribbons and their photovoltaic response. <i>Materials Letters</i> , 2007 , 61, 4459-4462	3.3	14
31	Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. <i>Nanotechnology</i> , 2007 , 18, 305705	3.4	26
30	Photoluminescence and electroluminescence properties of ZnO films on p-type silicon wafers. <i>Chinese Physics B</i> , 2007 , 16, 1790-1795		13
29	Optical processes in the formation of stimulated emission from ZnO nanowires. <i>Chinese Physics B</i> , 2007 , 16, 1129-1134		11
28	Phonon-assisted stimulated emission in Mn-doped ZnO nanowires. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 136206	1.8	24
27	Synthesis of PbS microcrystals via a hydrothermal process. <i>Materials Letters</i> , 2006 , 60, 1242-1246	3.3	32
26	Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons. <i>Nanotechnology</i> , 2006 , 17, 1083-6	3.4	62

(2003-2006)

25	Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. <i>Applied Physics Letters</i> , 2006 , 88, 173102	3.4	38
24	High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 22313-7	3.4	47
23	Lasing mechanism of ZnO nanowires/nanobelts at room temperature. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12865-73	3.4	112
22	Simulated emission behaviors from Excitons in CdS nanoribbons. <i>Journal of Physics: Conference Series</i> , 2006 , 28, 12-17	0.3	4
21	Self-Absorption Effect in the Spatial Resolved Spectra of CdS Nano-Ribbon Optical Waveguide Observed by Near-Field Spectroscopy. <i>Optical Review</i> , 2006 , 13, 235-238	0.9	7
20	Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. <i>Applied Physics Letters</i> , 2005 , 86, 141901	3.4	136
19	Color-tunable photoluminescence of alloyed CdS(x)Se(1-x) nanobelts. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15692-3	16.4	206
18	Study of Eu(DBM)3phen-doped optical polymer waveguides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 820	1.7	17
17	Study of rhodamine B-doped polymer optical waveguides by using scanning near-field optical microscopy 2005 , 6019, 702		
16	Controllable growth and optical properties of large scale ZnO arrays. <i>Journal of Crystal Growth</i> , 2005 , 282, 125-130	1.6	20
15	ZnO flowers made up of thin nanosheets and their optical properties. <i>Journal of Crystal Growth</i> , 2005 , 282, 165-172	1.6	119
14	Stimulated emissions in aligned CdS nanowires at room temperature. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24268-72	3.4	143
13	Optical waveguide through CdS nanoribbons. <i>Small</i> , 2005 , 1, 980-3	11	184
12	Thermal stability and lasing of CdS nanowires coated by amorphous silica. <i>Small</i> , 2005 , 1, 1058-62	11	44
11	Surface crystallization effects on the optical and electric properties of CdS nanorods. <i>Nanotechnology</i> , 2005 , 16, 2402-6	3.4	19
10	Growth of dendritic cobalt nanocrystals at room temperature. Journal of Crystal Growth, 2004, 260, 427	'- <u>4</u> .364	83
9	Preparation of nanosized particles of FeNi and FeCo alloy in solution. <i>Journal of Materials Science</i> , 2003 , 38, 4581-4585	4.3	53
8	Gamma-irradiation-induced Ag/SiO2 composite films and their optical absorption properties. <i>Materials Research Bulletin</i> , 2003 , 38, 789-796	5.1	16

7	Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment. <i>Applied Surface Science</i> , 2003 , 205, 323-328	6.7	59
6	Non-Traditional Positively-Biased Narrow-Band Perovskite Single-Crystal Photodetectors Enabled by Interfacial Engineering. <i>Advanced Optical Materials</i> ,2102225	8.1	1
5	Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. <i>Nano Research</i> ,1	10	5
4	Amorphous B-doped graphitic carbon nitride quantum dots with high photoluminescence quantum yield of near 90% and their sensitive detection of Fe2+/Cd2+. <i>Science China Materials</i> ,1	7.1	3
3	Low Thresholds and Tunable Modes in Plasmon-Assisted Perovskite Microlasers. <i>Advanced Optical Materials</i> ,2102777	8.1	1
2	Magnetic Doping Induced Strong Circularly Polarized Light Emission and Detection in 2D Layered Halide Perovskite. <i>Advanced Optical Materials</i> ,2200183	8.1	5
1	Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors. <i>Advanced Functional Materials</i> ,2200973	15.6	