Aanlian Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777213/publications.pdf

Version: 2024-02-01

8181 15266 19,998 342 76 126 citations h-index g-index papers 352 352 352 20329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 2014, 9, 1024-1030.	31.5	1,056
2	Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews, 2015, 44, 8859-8876.	38.1	917
3	Growth of Alloy MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. Journal of the American Chemical Society, 2014, 136, 3756-3759.	13.7	444
4	Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nature Communications, 2017, 8, 1906.	12.8	369
5	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	10.0	359
6	Synthesis of WS _{2<i>x</i>} Se _{2â€"2<i>x</i>} Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Letters, 2016, 16, 264-269.	9.1	308
7	Two-Dimensional CH ₃ NH ₃ Pbl ₃ Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Diverge 12765.	8.0	296
8	Directional Growth of Ultralong CsPbBr ₃ Perovskite Nanowires for High-Performance Photodetectors. Journal of the American Chemical Society, 2017, 139, 15592-15595.	13.7	260
9	Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 2019, 251, 181-194.	20.2	260
10	Insights into Enhanced Visible-Light Photocatalytic Hydrogen Evolution of g-C ₃ N ₄ and Highly Reduced Graphene Oxide Composite: The Role of Oxygen. Chemistry of Materials, 2015, 27, 1612-1621.	6.7	252
11	Novel Ag ₃ PO ₄ /CeO ₂ composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A, 2014, 2, 1750-1756.	10.3	251
12	Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 2017, 11, 1189-1195.	14.6	245
13	Color-Tunable Photoluminescence of Alloyed CdSxSe1-xNanobelts. Journal of the American Chemical Society, 2005, 127, 15692-15693.	13.7	221
14	Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11, 10681-10688.	14.6	216
15	Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 18083-18090.	13.7	216
16	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	12.8	213
17	Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO ₃). Journal of the American Chemical Society, 2017, 139, 13525-13532.	13.7	209
18	High-Quality In-Plane Aligned CsPbX ₃ Perovskite Nanowire Lasers with Composition-Dependent Strong Exciton–Photon Coupling. ACS Nano, 2018, 12, 6170-6178.	14.6	204

#	Article	IF	CITATIONS
19	Optical Waveguide through CdS Nanoribbons. Small, 2005, 1, 980-983.	10.0	193
20	Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nature Materials, 2020, 19, 617-623.	27.5	193
21	Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip. Nano Letters, 2009, 9, 784-788.	9.1	191
22	Lateral Growth of Composition Graded Atomic Layer MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>>/sub> Nanosheets. Journal of the American Chemical Society, 2015, 137, 5284-5287.}	13.7	191
23	Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Science and Applications, 2021, 10, 72.	16.6	184
24	Flexible Photodetector Arrays Based on Patterned CH _{36^'} <i>_x</i> CH _{3(sub>NH₃Perovskite Film for Realâ€Time Photosensing and Imaging. Advanced Materials, 2019, 31, e1805913.}	21.0	174
25	Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light: Science and Applications, 2019, 8, 106.	16.6	172
26	How lasing happens in CsPbBr3 perovskite nanowires. Nature Communications, 2019, 10, 265.	12.8	168
27	Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe ₂ /Bi ₂ Te ₃ <i>p–n</i> Heterojunctions. ACS Nano, 2019, 13, 13573-13580.	14.6	165
28	Stimulated Emissions in Aligned CdS Nanowires at Room Temperature. Journal of Physical Chemistry B, 2005, 109, 24268-24272.	2.6	153
29	Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Applied Physics Letters, 2005, 86, 141901.	3.3	148
30	Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton–Phonon Interaction. ACS Central Science, 2019, 5, 1377-1386.	11.3	142
31	Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nature Electronics, 2021, 4, 342-347.	26.0	140
32	Band Alignment Engineering in Two-Dimensional Lateral Heterostructures. Journal of the American Chemical Society, 2018, 140, 11193-11197.	13.7	136
33	Spatial Composition Grading of Quaternary ZnCdSSe Alloy Nanowires with Tunable Light Emission between 350 and 710 nm on a Single Substrate. ACS Nano, 2010, 4, 671-680.	14.6	134
34	Room-Temperature Near-Infrared Photodetectors Based on Single Heterojunction Nanowires. Nano Letters, 2014, 14, 694-698.	9.1	134
35	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. Nano Letters, 2016, 16, 6416-6424.	9.1	134
36	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	21.0	134

#	Article	IF	CITATIONS
37	Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Applied Catalysis B: Environmental, 2019, 254, 321-328.	20.2	134
38	Perovskite–Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Nearâ€Infrared Telecommunication Band. Advanced Materials, 2017, 29, 1604431.	21.0	132
39	Two-Dimensional MoS ₂ -Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. Chemistry of Materials, 2017, 29, 5504-5512.	6.7	131
40	ZnO flowers made up of thin nanosheets and their optical properties. Journal of Crystal Growth, 2005, 282, 165-172.	1.5	128
41	Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS ₂ Nanosheets. ACS Nano, 2017, 11, 4892-4898.	14.6	123
42	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vaporâ€"Solution Method. Advanced Materials, 2017, 29, 1703256.	21.0	121
43	Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature. Journal of Physical Chemistry B, 2006, 110, 12865-12873.	2.6	120
44	Rayleigh-Instability-Induced Metal Nanoparticle Chains Encapsulated in Nanotubes Produced by Atomic Layer Deposition. Nano Letters, 2008, 8, 114-118.	9.1	118
45	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced Science, 2021, 8, e2100569.	11.2	118
46	Direct Vapor Growth of Perovskite CsPbBr ₃ Nanoplate Electroluminescence Devices. ACS Nano, 2017, 11, 9869-9876.	14.6	117
47	Composition and Bandgapâ€Graded Semiconductor Alloy Nanowires. Advanced Materials, 2012, 24, 13-33.	21.0	113
48	Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 2017, 10, 3385-3395.	10.4	113
49	Photocurrent detection of the orbital angular momentum of light. Science, 2020, 368, 763-767.	12.6	113
50	Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics. Nano Energy, 2019, 59, 66-74.	16.0	112
51	Facile <i>in situ</i> construction of mediator-free direct Z-scheme g-C ₃ N ₄ /CeO ₂ heterojunctions with highly efficient photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 275302.	2.8	110
52	Room-Temperature Dual-Wavelength Lasing from Single-Nanoribbon Lateral Heterostructures. Journal of the American Chemical Society, 2012, 134, 12394-12397.	13.7	109
53	Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nature Communications, 2020, 11, 1330.	12.8	102
54	Spatial Bandgap Engineering along Single Alloy Nanowires. Journal of the American Chemical Society, 2011, 133, 2037-2039.	13.7	101

#	Article	IF	CITATIONS
55	Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Letters, 2016, 8, 29-35.	27.0	101
56	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures <i>via</i> Layer-Selected Atomic Substitution. ACS Nano, 2017, 11, 961-967.	14.6	99
57	Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chemical Society Reviews, 2018, 47, 7504-7521.	38.1	99
58	Generation of helical topological exciton-polaritons. Science, 2020, 370, 600-604.	12.6	97
59	Generalized Synthetic Strategy for Amorphous Transition Metal Oxidesâ€Based 2D Heterojunctions with Superb Photocatalytic Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2021, 31, 2009230.	14.9	97
60	Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019, 12, 1894-1899.	10.4	96
61	Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer. Journal of the American Chemical Society, 2018, 140, 15675-15683.	13.7	95
62	Controlled Vapor Growth and Nonlinear Optical Applications of Largeâ€Area 3R Phase WS ₂ and WSe ₂ Atomic Layers. Advanced Functional Materials, 2019, 29, 1806874.	14.9	92
63	Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2100816.	14.9	92
64	Growth of dendritic cobalt nanocrystals at room temperature. Journal of Crystal Growth, 2004, 260, 427-434.	1.5	91
65	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. ACS Nano, 2016, 10, 8474-8481.	14.6	88
66	Controllable Growth and Formation Mechanisms of Dislocated WS ₂ Spirals. Nano Letters, 2018, 18, 3885-3892.	9.1	88
67	Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications. Advanced Optical Materials, 2018, 6, 1800420.	7.3	88
68	Wavelength-Converted/Selective Waveguiding Based on Composition-Graded Semiconductor Nanowires. Nano Letters, 2012, 12, 5003-5007.	9.1	87
69	Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors. Advanced Science, 2019, 6, 1802204.	11.2	87
70	Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retinaâ€Like Vision Sensing. Advanced Materials, 2021, 33, e2006006.	21.0	87
71	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	12.8	86
72	Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX ₃ ; X = Br, I) Nanowires. ACS Energy Letters, 2019, 4, 1045-1052.	17.4	84

#	Article	IF	Citations
73	Rubidium Doping to Enhance Carrier Transport in CsPbBr ₃ Single Crystals for High-Performance X-Ray Detection. ACS Applied Materials & Interfaces, 2020, 12, 989-996.	8.0	84
74	Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light: Science and Applications, 2022, 11 , .	16.6	84
75	On-Nanowire Spatial Band Gap Design for White Light Emission. Nano Letters, 2011, 11, 5085-5089.	9.1	81
76	Enhancing Light Emission of ZnOâ€Nanofilm/Siâ€Micropillar Heterostructure Arrays by Piezoâ€Phototronic Effect. Advanced Materials, 2015, 27, 4447-4453.	21.0	81
77	Rational Kinetics Control toward Universal Growth of 2D Vertically Stacked Heterostructures. Advanced Materials, 2019, 31, e1901351.	21.0	79
78	Quaternary Alloy Semiconductor Nanobelts with Bandgap Spanning the Entire Visible Spectrum. Journal of the American Chemical Society, 2009, 131, 9502-9503.	13.7	77
79	Giant nonlinear optical activity in two-dimensional palladium diselenide. Nature Communications, 2021, 12, 1083.	12.8	76
80	Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals. ACS Nano, 2018, 12, 4853-4860.	14.6	75
81	Near Full-Composition-Range High-Quality GaAs _{1–<i>x</i>} Sb _{<i>x</i>} Nanowires Grown by Molecular-Beam Epitaxy. Nano Letters, 2017, 17, 622-630.	9.1	74
82	Strong Second- and Third-Harmonic Generation in 1D Chiral Hybrid Bismuth Halides. Journal of the American Chemical Society, 2021, 143, 16095-16104.	13.7	74
83	Liquid-Metal-Assisted Growth of Vertical GaSe/MoS ₂ p–n Heterojunctions for Sensitive Self-Driven Photodetectors. ACS Nano, 2021, 15, 10039-10047.	14.6	73
84	A Noble Metal Dichalcogenide for Highâ€Performance Fieldâ€Effect Transistors and Broadband Photodetectors. Advanced Functional Materials, 2020, 30, 1907945.	14.9	72
85	CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65, 343-349.	9.0	72
86	Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. Chemical Engineering Journal, 2020, 397, 125470.	12.7	72
87	Doping-Induced Hydrogen-Bond Engineering in Polymeric Carbon Nitride To Significantly Boost the Photocatalytic H ₂ Evolution Performance. ACS Applied Materials & Interfaces, 2019, 11, 17341-17349.	8.0	71
88	Semiconductor Alloy Nanoribbon Lateral Heterostructures for Highâ€Performance Photodetectors. Advanced Materials, 2014, 26, 2844-2849.	21.0	70
89	WO ₃ –WS ₂ Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. Journal of the American Chemical Society, 2019, 141, 11754-11758.	13.7	69
90	Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment. Applied Surface Science, 2003, 205, 323-328.	6.1	67

#	Article	IF	Citations
91	Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons. Nanotechnology, 2006, 17, 1083-1086.	2.6	67
92	Low-Threshold Nanowire Laser Based on Composition-Symmetric Semiconductor Nanowires. Nano Letters, 2013, 13, 1251-1256.	9.1	67
93	Bandâ€Selective Infrared Photodetectors with Completeâ€Compositionâ€Range InAs <i>>_x</i> >P _{1â€<i>>x</i>} Alloy Nanowires. Advanced Materials, 2014, 26, 7444-7449.	21.0	67
94	Color-Changeable Optical Transport through Se-Doped CdS 1D Nanostructures. Nano Letters, 2007, 7, 2970-2975.	9.1	65
95	Spaceâ€Confined Synthesis of 2D Allâ€Inorganic CsPbl ₃ Perovskite Nanosheets for Multiphotonâ€Pumped Lasing. Advanced Optical Materials, 2018, 6, 1800879.	7.3	65
96	Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. ACS Nano, 2019, 13, 7996-8003.	14.6	64
97	High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Research, 2020, 13, 1053-1059.	10.4	63
98	Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 7655-7660.	3.1	62
99	Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. Nano Energy, 2017, 32, 28-35.	16.0	62
100	Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors. Nano Letters, 2019, 19, 5920-5929.	9.1	61
101	Asymmetric light propagation in composition-graded semiconductor nanowires. Scientific Reports, 2012, 2, 820.	3.3	60
102	Si-CdSSe Core/Shell Nanowires with Continuously Tunable Light Emission. Nano Letters, 2008, 8, 3413-3417.	9.1	58
103	Single-Crystalline Cu ₄ Bi ₄ S ₉ Nanoribbons: Facile Synthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chemistry of Materials, 2011, 23, 1299-1305.	6.7	58
104	Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. Journal of Materials Chemistry C, 2017, 5, 7739-7745.	5.5	58
105	The optical properties of ZnO sheets electrodeposited on ITO glass. Materials Letters, 2007, 61, 2000-2003.	2.6	57
106	Preparation and Elastic Properties of Helical Nanotubes Obtained by Atomic Layer Deposition with Carbon Nanocoils as Templates. Small, 2010, 6, 910-914.	10.0	57
107	Preparation of nanosized particles of FeNi and FeCo alloy in solution. Journal of Materials Science, 2003, 38, 4581-4585.	3.7	56
108	High-Quality Alloyed CdSxSe1-xWhiskers as Waveguides with Tunable Stimulated Emission. Journal of Physical Chemistry B, 2006, 110, 22313-22317.	2.6	56

#	Article	IF	Citations
109	Wavelengthâ€Tunable Midâ€Infrared Lasing from Black Phosphorus Nanosheets. Advanced Materials, 2020, 32, e1808319.	21.0	56
110	Plasmonic Amplification with Ultra-High Optical Gain at Room Temperature. Scientific Reports, 2013, 3, 1967.	3.3	55
111	Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at $1.31 < i > \hat{l} / 4 < i > m$. Semiconductor Science and Technology, 2015, 30, 105033.	2.0	52
112	Nonvolatile MoTe ₂ <i>p–n</i> Diodes for Optoelectronic Logics. ACS Nano, 2019, 13, 7216-7222.	14.6	52
113	High-responsivity two-dimensional p-Pbl ₂ /n-WS ₂ vertical heterostructure photodetectors enhanced by photogating effect. Materials Horizons, 2019, 6, 1474-1480.	12.2	51
114	Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11, 329.	12.8	51
115	Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes. Applied Surface Science, 2016, 370, 427-432.	6.1	50
116	Nanolaser arrays based on individual waved CdS nanoribbons. Laser and Photonics Reviews, 2016, 10, 458-464.	8.7	49
117	Ultrahigh Quality Upconverted Singleâ€Mode Lasing in Cesium Lead Bromide Spherical Microcavity. Advanced Optical Materials, 2018, 6, 1800391.	7. 3	47
118	Robust and High Photoluminescence in WS ₂ Monolayer through In Situ Defect Engineering. Advanced Functional Materials, 2021, 31, 2105339.	14.9	47
119	Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. Nano Energy, 2016, 30, 481-487.	16.0	46
120	Thermal Stability and Lasing of CdS Nanowires Coated by Amorphous Silica. Small, 2005, 1, 1058-1062.	10.0	45
121	Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates. Journal of Physical Chemistry C, 2008, 112, 9253-9260.	3.1	45
122	Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity. Materials Letters, 2014, 116, 209-211.	2.6	45
123	Few-layer WO3 nanosheets for high-performance UV-photodetectors. Materials Letters, 2015, 148, 184-187.	2.6	45
124	Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable <i>in situ</i> surface engineering and morphology. Nanoscale, 2019, 11, 16393-16405.	5.6	45
125	Controlled Synthesis and Photonics Applications of Metal Halide Perovskite Nanowires. Small Methods, 2019, 3, 1800294.	8.6	45
126	Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation. Nanoscale, 2020, 12, 3135-3145.	5.6	45

#	Article	IF	CITATIONS
127	Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Efficient Hydrogen Evolution. Nano-Micro Letters, 2020, 12, 52.	27.0	45
128	Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals. Journal of Physics and Chemistry of Solids, 2016, 98, 28-31.	4.0	44
129	Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nature Communications, 2020, 11 , 4442.	12.8	44
130	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. Physical Review Letters, 2015, 115, 027403.	7.8	43
131	Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure. Nano Letters, 2019, 19, 7217-7225.	9.1	42
132	Epitaxial synthesis of ultrathin β-In ₂ Se ₃ /MoS ₂ heterostructures with high visible/near-infrared photoresponse. Nanoscale, 2020, 12, 6480-6488.	5.6	42
133	Doubleâ€Gate MoS ₂ Fieldâ€Effect Transistors with Fullâ€Range Tunable Threshold Voltage for Multifunctional Logic Circuits. Advanced Materials, 2021, 33, e2101036.	21.0	42
134	Nonlinear photoluminescence in monolayer WS ₂ : parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale, 2017, 9, 7235-7241.	5.6	41
135	Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Applied Physics Letters, 2006, 88, 173102.	3.3	40
136	Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range. Nano Letters, 2012, 12, 1799-1805.	9.1	39
137	Spatially composition-modulated two-dimensional WS _{2x} Se _{2(1â^'x)} nanosheets. Nanoscale, 2017, 9, 4707-4712.	5.6	39
138	Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure. Npj 2D Materials and Applications, 2019, 3, .	7.9	39
139	Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires. Nano Research, 2010, 3, 326-338.	10.4	38
140	<pre><mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ag</mml:mtext></mml:mrow><mml:mn mathvariant="bold">3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mtext>PO</mml:mtext>4</mml:mrow></mml:msub></mml:mrow></mml:math>Semiconductor</pre>	mr @₩ > <m< td=""><td>ml38n</td></m<>	ml 38 n
141	Photocatalyst: Possibilities and Challenges. Journal of Nanomaterials, 2013, 2013, 1-8. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging. Nano Letters, 2018, 18, 3024-3031.	9.1	38
142	Room-temperature high-performance CsPbBr ₃ perovskite tetrahedral microlasers. Nanoscale, 2019, 11, 2393-2400.	5.6	38
143	Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chemical Society Reviews, 2021, 50, 6401-6422.	38.1	38
144	Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. Journal of Materials Chemistry C, 2018, 6, 11740-11748.	5.5	37

#	Article	IF	Citations
145	Synthesis of PbS microcrystals via a hydrothermal process. Materials Letters, 2006, 60, 1242-1246.	2.6	36
146	Facile <i>in situ</i> synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability. Journal Physics D: Applied Physics, 2018, 51, 075501.	2.8	36
147	Enhanced Trion Emission and Carrier Dynamics in Monolayer WS ₂ Coupled with Plasmonic Nanocavity. Advanced Optical Materials, 2020, 8, 2001147.	7.3	36
148	Nearâ€Unity Polarization of Valleyâ€Dependent Secondâ€Harmonic Generation in Stacked TMDC Layers and Heterostructures at Room Temperature. Advanced Materials, 2020, 32, e1908061.	21.0	36
149	High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. ACS Photonics, 2019, 6, 793-801.	6.6	35
150	Wavelength-Tunable Interlayer Exciton Emission at the Near-Infrared Region in van der Waals Semiconductor Heterostructures. Nano Letters, 2020, 20, 3361-3368.	9.1	35
151	Spinâ€Orbit Torque in Van der Waalsâ€Layered Materials and Heterostructures. Advanced Science, 2021, 8, e2100847.	11.2	35
152	Enhanced visible-light photoactivity of La-doped ZnS thin films. Applied Physics A: Materials Science and Processing, 2012, 108, 895-900.	2.3	34
153	Recent Advances in Twoâ€Dimensional Heterostructures: From Band Alignment Engineering to Advanced Optoelectronic Applications. Advanced Electronic Materials, 2021, 7, 2001174.	5.1	34
154	Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts. Journal of Physical Chemistry C, 2007, 111, 14253-14256.	3.1	33
155	Hierarchical SnO ₂ Nanostructures: Linear Assembly of Nanorods on the Nanowire Backbones. Journal of Physical Chemistry C, 2010, 114, 1844-1848.	3.1	33
156	Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures. Journal of Physical Chemistry C, 2011, 115, 1415-1421.	3.1	33
157	Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Research, 2016, 9, 933-941.	10.4	33
158	Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Science Bulletin, 2019, 64, 698-704.	9.0	33
159	A host–guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution. Chemical Engineering Journal, 2022, 430, 132880.	12.7	33
160	Stimulated emission from trapped excitons in SnO2 nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 39, 223-229.	2.7	32
161	Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties. Nano Research, 2019, 12, 3123-3128.	10.4	32
162	Dualâ€channel type tunable fieldâ€effect transistors based on vertical bilayer WS _{2(1 â^' <i>x</i>)} Se _{2<i>x</i>} /SnS ₂ heterostructures. Informa Materiály, 2020, 2, 752-760.	Änı̃¥.3	32

#	Article	IF	CITATIONS
163	Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO ₂ Electroreduction. Nano Letters, 2021, 21, 1003-1010.	9.1	32
164	Current-driven magnetization dynamics in magnetic trilayers with a tilted spin polarizer. European Physical Journal B, 2010, 73, 417-421.	1.5	31
165	Atomic Layer Deposition Assisted Template Approach for Electrochemical Synthesis of Au Crescent-Shaped Half-Nanotubes. ACS Nano, 2011, 5, 788-794.	14.6	31
166	Indirect to direct band gap crossover in two-dimensional WS2($1\hat{a}$ 'x)Se2x alloys. Npj 2D Materials and Applications, 2021, 5, .	7.9	31
167	Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach. ACS Photonics, 2018, 5, 192-204.	6.6	30
168	Seamlessly Splicing Metallic Sn <i></i> <fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{<fi>_{Sn<ii>_{<i></i>Sn<ii>_{<i>_{Sn<ii>_{<i>_{Sn<ii>_{<i>_{Sn<ii> <br <="" td=""/><td>11.2</td><td>30</td></ii>}</i>}</ii>}</i>}</ii>}</i>}</ii>}</ii>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>}</fi>	11.2	30
169	Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions. Journal of Physical Chemistry C, 2008, 112, 17546-17553.	3.1	29
170	Theory of ferromagnetic resonance in magnetic trilayers with a tilted spin polarizer. Physical Review B, 2008, 78, .	3.2	29
171	Temperature Difference Triggering Controlled Growth of Allâ€Inorganic Perovskite Nanowire Arrays in Air. Small, 2018, 14, e1803010.	10.0	29
172	Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Science Bulletin, 2020, 65, 293-299.	9.0	29
173	Evidence for moir $\tilde{\mathbb{A}}$ intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light: Science and Applications, 2022, 11 , .	16.6	29
174	Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. Nanotechnology, 2007, 18, 305705.	2.6	28
175	Phonon-assisted stimulated emission in Mn-doped ZnO nanowires. Journal of Physics Condensed Matter, 2007, 19, 136206.	1.8	28
176	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. Journal Physics D: Applied Physics, 2019, 53, 015502.	2.8	28
177	Multicolor Semiconductor Lasers. Advanced Optical Materials, 2019, 7, 1900071.	7.3	28
178	Ferromagnetic and metallic properties of the semihydrogenated GaN sheet. Physica Status Solidi (B): Basic Research, 2011, 248, 1442-1445.	1.5	27
179	Growth of CdSe/MoS2 vertical heterostructures for fast visible-wavelength photodetectors. Journal of Alloys and Compounds, 2020, 815, 152309.	5.5	27
180	Structural stability and Raman scattering of ZnSe nanoribbons under high pressure. Journal of Alloys and Compounds, 2009, 480, 798-801.	5.5	26

#	Article	IF	Citations
181	Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength. Optical Materials Express, 2011, 1, 1202.	3.0	26
182	Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers. Applied Physics Letters, 2011, 99, .	3.3	26
183	Large-Scale Growth of Ultrathin Low-Dimensional Perovskite Nanosheets for High-Detectivity Photodetectors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2884-2891.	8.0	26
184	An Electrically Controlled Wavelength-Tunable Nanoribbon Laser. ACS Nano, 2020, 14, 3397-3404.	14.6	26
185	Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. Nano-Micro Letters, 2014, 6, 301-306.	27.0	25
186	Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal Physics D: Applied Physics, 2017, 50, 375101.	2.8	25
187	Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS ₂ Strongly Coupled with Plasmonic Lattices. Nano Letters, 2020, 20, 790-798.	9.1	25
188	Twist Angle-Dependent Optical Responses in Controllably Grown WS ₂ Vertical Homojunctions. Chemistry of Materials, 2020, 32, 9721-9729.	6.7	25
189	Mechanism of Extreme Optical Nonlinearities in Spiral WS ₂ above the Bandgap. Nano Letters, 2020, 20, 2667-2673.	9.1	25
190	Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light: Science and Applications, 2021, 10, 60.	16.6	25
191	TiO2 nanowires sensitized with CdS quantum dots and the surface photovoltage properties. Materials Letters, 2010, 64, 1688-1690.	2.6	24
192	Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology, 2013, 24, 055201.	2.6	24
193	Surface plasmon resonance enhanced band-edge emission of CdS–SiO ₂ core–shell nanowires with gold nanoparticles attached. Journal of Materials Chemistry C, 2013, 1, 566-571.	5.5	23
194	The study on crystal defects-involved energy transfer process of Eu3+ doped ZnO lattice. Materials Letters, 2014, 129, 65-67.	2.6	23
195	High on/off ratio photosensitive field effect transistors based on few layer SnS ₂ . Nanotechnology, 2016, 27, 34LT01.	2.6	23
196	Controllable growth and optical properties of large scale ZnO arrays. Journal of Crystal Growth, 2005, 282, 125-130.	1.5	22
197	One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires. Journal Physics D: Applied Physics, 2008, 41, 135301.	2.8	22
198	Controllable Vapor Growth of Large-Area Aligned CdSxSe1â^'x Nanowires for Visible Range Integratable Photodetectors. Nano-Micro Letters, 2018, 10, 58.	27.0	22

#	Article	IF	CITATIONS
199	Wavelength Selective Photodetectors Integrated on a Single Compositionâ€Graded Semiconductor Nanowire. Advanced Optical Materials, 2018, 6, 1800293.	7.3	21
200	Phononâ€Assisted Electroâ€Optical Switches and Logic Gates Based on Semiconductor Nanostructures. Advanced Materials, 2019, 31, e1901263.	21.0	21
201	Efficient control of emission and carrier polarity in WS2 monolayer by indium doping. Science China Materials, 2021, 64, 1449-1456.	6.3	21
202	Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials. Research, 2020, 2020, 5464258.	5.7	21
203	Surface crystallization effects on the optical and electric properties of CdS nanorods. Nanotechnology, 2005, 16, 2402-2406.	2.6	20
204	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	3.1	20
205	General Synthesis of Nanoporous 2D Metal Compounds with 3D Bicontinous Structure. Advanced Materials, 2020, 32, e2004055.	21.0	20
206	Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Research, 2022, 15, 3539-3547.	10.4	20
207	Phase diagram of magnetic multilayers with tilted dual spin torques. Journal of Applied Physics, 2011, 109, .	2.5	19
208	Tin Nanoparticles–Enhanced Optical Transportation in Branched CdS Nanowire Waveguides. Advanced Optical Materials, 2018, 6, 1800305.	7.3	19
209	Mesoporous g-C3N4 Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2018, 18, 5502-5510.	0.9	19
210	Surface functionalized 3D carbon fiber boosts the lithium storage behaviour of transition metal oxide nanowires <i>via</i> strong electronic interaction and tunable adsorption energy. Nanoscale Horizons, 2019, 4, 1402-1410.	8.0	19
211	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. Journal of Materials Chemistry C, 2019, 7, 5488-5496.	5.5	19
212	Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi><mml:mi>Br</mml:mi>Nanowires at Room Temperature. Physical Review Applied, 2020, 13, .</mml:mi></mml:mi></mml:math>	>3/8mml:m∣	row> <mml:ı< td=""></mml:ı<>
213	Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS ₂ mixed-dimensional phototransistors. Opto-Electronic Advances, 2021, 4, 210017-210017.	13.3	19
214	Orbital-Angular-Momentum-Controlled Hybrid Nanowire Circuit. Nano Letters, 2021, 21, 6220-6227.	9.1	19
215	Gamma-irradiation-induced Ag/SiO2 composite films and their optical absorption properties. Materials Research Bulletin, 2003, 38, 789-796.	5.2	18
216	Study of Eu(DBM)3phen-doped optical polymer waveguides. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 820.	2.1	18

#	Article	IF	Citations
217	A simple and cheap way to produce porous ZnO ribbons and their photovoltaic response. Materials Letters, 2007, 61, 4459-4462.	2.6	18
218	Vapor growth of CdS nanowires/WS ₂ nanosheet heterostructures with sensitive photodetections. Nanotechnology, 2019, 30, 345603.	2.6	18
219	Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation. Journal of Materials Science and Technology, 2021, 86, 210-218.	10.7	18
220	Observation of delayed fluorescence in CdSxSe1 \hat{a} °x nanobelts by femtosecond time-resolved fluorescence spectroscopy. Applied Physics Letters, 2008, 92, .	3.3	17
221	Negative differential resistance in polymer molecular devices modulated with molecular length. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3857-3862.	2.1	17
222	Visible whispering-gallery modes in ZnO microwires with varied cross sections. Journal of Applied Physics, $2011,110,110$	2.5	17
223	Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region. Nano Letters, 2019, 19, 1204-1209.	9.1	17
224	Magneto-spectroscopy of exciton Rydberg states in a CVD grown WSe2 monolayer. Applied Physics Letters, 2019, 114, .	3.3	17
225	Amorphous B-doped graphitic carbon nitride quantum dots with high photoluminescence quantum yield of near 90% and their sensitive detection of Fe2+/Cd2+. Science China Materials, 2021, 64, 3037-3050.	6.3	17
226	A Waveguide-Integrated Two-Dimensional Light-Emitting Diode Based on p-Type WSe ₂ /n-Type CdS Nanoribbon Heterojunction. ACS Nano, 2022, 16, 4371-4378.	14.6	17
227	Magnetic Doping Induced Strong Circularly Polarized Light Emission and Detection in 2D Layered Halide Perovskite. Advanced Optical Materials, 2022, 10, .	7.3	17
228	Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. Physical Review B, 2010, 82, .	3.2	16
229	Mechanically and electronically controlled molecular switch behavior in a compound molecular device. Applied Physics Letters, 2010, 97, 103506.	3.3	16
230	Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits. Optics Communications, 2011, 284, 471-475.	2.1	16
231	Template-free synthesis and photocatalytic activity of CdS nanorings. Materials Letters, 2013, 100, 141-144.	2.6	16
232	Power―and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser and Photonics Reviews, 2016, 10, 835-842.	8.7	16
233	Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	16
234	Protonated supramolecular complex-induced porous graphitic carbon nitride nanosheets as bifunctional catalyst for water oxidation and organic pollutant degradation. Journal of Materials Science, 2019, 54, 7637-7650.	3.7	16

#	Article	IF	Citations
235	Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS ₂ Monolayers. Nano Letters, 2022, 22, 2112-2119.	9.1	16
236	Optical Sensor Based on a Single CdS Nanobelt. Sensors, 2014, 14, 7332-7341.	3.8	15
237	Microphotoluminescence of individual ZnSe nanoribbons. Materials Letters, 2014, 129, 118-121.	2.6	15
238	Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. Science Bulletin, 2015, 60, 1674-1679.	9.0	15
239	Facile one-step in-situ synthesis of type-II CeO2/CeF3 composite with tunable morphology and photocatalytic activity. Ceramics International, 2016, 42, 16374-16381.	4.8	15
240	Active optical antennas driven by inelastic electron tunneling. Nanophotonics, 2018, 7, 1503-1516.	6.0	15
241	Carrier-Funneling-Induced Efficient Energy Transfer in CdSxSe1–x Heterostructure Microplates. ACS Energy Letters, 2019, 4, 2796-2804.	17.4	15
242	Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor Bilayers for a Tunable Spectral Response. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55064-55071.	8.0	15
243	Photoluminescence and electroluminescence properties of ZnO films on p-type silicon wafers. Chinese Physics B, 2007, 16, 1790-1795.	1.3	14
244	Ordered CdS micro/nanostructures on CdSe nanostructures. Nanotechnology, 2009, 20, 125601.	2.6	14
245	Modulated exciton-plasmon interactions in Au-SiO_2-CdTe composite nanoparticles. Optics Express, 2013, 21, 11095.	3.4	14
246	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. Journal of Materials Chemistry C, 2015, 3, 5933-5939.	5.5	14
247	Electrically switchable valley polarization, spin/valley filter, and valve effects in transition-metal dichalcogenide monolayers interfaced with two-dimensional ferromagnetic semiconductors. Physical Review B, 2021, 104, .	3.2	14
248	Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. Applied Physics Letters, 2022, 120, .	3.3	14
249	Ab initio studies of half-metallic ferromagnetism in carbon-doped. Solid State Communications, 2010, 150, 923-927.	1.9	13
250	Dilute tin-doped CdS nanowires for low-loss optical waveguiding. Journal of Materials Chemistry C, 2013, 1, 4391.	5.5	13
251	Bandgap broadly tunable GaZnSeAs alloy nanowires. Physical Chemistry Chemical Physics, 2013, 15, 2912.	2.8	13
252	Trion-Induced Distinct Transient Behavior and Stokes Shift in WS ₂ Monolayers. Journal of Physical Chemistry Letters, 2019, 10, 3763-3772.	4.6	13

#	Article	IF	Citations
253	Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode. Science China Materials, 2020, 63, 1570-1578.	6.3	13
254	Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies. Journal of Materials Chemistry C, 2020, 8, 13976-13981.	5.5	13
255	Contact and injection engineering for low SS reconfigurable FETs and high gain complementary inverters. Science Bulletin, 2020, 65, 2007-2013.	9.0	13
256	Self-assembled hierarchical carbon/g-C ₃ N ₄ composite with high photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 135501.	2.8	12
257	Controlled growth of SnSe/MoS ₂ vertical p–n heterojunction for optoelectronic applications. Nano Futures, 2021, 5, 015002.	2.2	12
258	Optical processes in the formation of stimulated emission from ZnO nanowires. Chinese Physics B, 2007, 16, 1129-1134.	1.3	11
259	Tilted spin torque-driven ferromagnetic resonance in a perpendicular-analyzer magnetic trilayer. Journal of Magnetism and Magnetic Materials, 2010, 322, 2264-2267.	2.3	11
260	Electronic structure and magnetic properties in Nitrogen-doped from density functional calculations. Solid State Communications, 2010, 150, 852-856.	1.9	11
261	Second-harmonic generation in single CdSe nanowires by focused cylindrical vector beams. Optics Letters, 2017, 42, 2623.	3.3	11
262	Ultra-long distance carrier transportation in bandgap-graded CdS _x Se _{1â^'x} nanowire waveguides. Nanoscale, 2019, 11, 8494-8501.	5.6	11
263	Carrier Transport Across a CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Lateral Heterojunction Visualized by Ultrafast Microscopy. Journal of Physical Chemistry C, 2020, 124, 11325-11332.	3.1	11
264	Controlled vapor growth of 2D magnetic Cr ₂ Se ₃ and its magnetic proximity effect in heterostructures*. Chinese Physics B, 2021, 30, 097601.	1.4	11
265	Spatially composition-graded alloy semiconductor nanowires and wavelength specific lateral-multijunction full-spectrum solar cells. , 2009, , .		10
266	Orientation-controlled synthesis and magnetism of single crystalline Co nanowires. Journal of Magnetism and Magnetic Materials, 2012, 324, 4043-4047.	2.3	10
267	Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films. Applied Physics A: Materials Science and Processing, 2015, 121, 773-777.	2.3	10
268	Non-fullerene acceptors for large-open-circuit-voltage and high-efficiency organic solar cells. Materials Today Nano, 2018, 1, 47-59.	4.6	10
269	Effects of the substrate-surface reconstruction and orientation on the spin valley polarization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mathvariant="normal">O</mml:mathvariant="normal"></mml:msub></mml:mrow>. Physical Review B. 2020. 102</mml:math 	mi>Te <td>nl:10 nl:mi><mm< td=""></mm<></td>	nl:10 nl:mi> <mm< td=""></mm<>
270	Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting. Applied Physics Letters, 2021, 118 , .	3.3	10

#	Article	IF	Citations
271	Synthesis and optical properties of InP quantum dot/nanowire heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1898-1902.	1.8	9
272	Er3+-doped Na0.5Bi0.5TiO3 ferroelectric thin films with enhanced electrical properties and strong green up-conversion luminescence. Applied Physics A: Materials Science and Processing, 2015, 119, 937-940.	2.3	9
273	Large photoluminescence redshift of ZnTe nanostructures: The effect of twin structures. Chemical Physics Letters, 2013, 576, 26-30.	2.6	8
274	Complete composition tunability of Cd1 \hat{a} 2n Te alloy nanostructures along a single substrate. Materials Letters, 2013, 105, 90-94.	2.6	8
275	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. Science China Materials, 2020, 63, 1503-1509.	6.3	8
276	A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. Nanoscale, 2021, 13, 9177-9184.	5.6	8
277	Self-Absorption Effect in the Spatial Resolved Spectra of CdS Nano-Ribbon Optical Waveguide Observed by Near-Field Spectroscopy. Optical Review, 2006, 13, 235-238.	2.0	7
278	Magnetic properties in nitrogen-doped CeO2 from first-principles calculations. Physica B: Condensed Matter, 2010, 405, 4858-4862.	2.7	7
279	Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOxNanowires. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	7
280	Trapping of surface plasmon polaritons in a multiple-teeth-shaped waveguide at visible wavelengths. Applied Physics B: Lasers and Optics, 2011, 103, 883-887.	2.2	7
281	Modulational instability and gap solitons in periodic ferromagnetic films. European Physical Journal B, 2012, 85, 1.	1.5	7
282	Gradient index plasmonic ring resonator with high extinction ratio. Optics Communications, 2014, 312, 280-283.	2.1	7
283	Polar-Induced Selective Epitaxial Growth of Multijunction Nanoribbons for High-Performance Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15813-15820.	8.0	7
284	Room temperature exciton-polaritons in high-quality 2D Ruddlesden–Popper perovskites (BA)2(MA)n-1Pbnl3n + 1 (n = 3, 4). Applied Physics Letters, 2020, 117, .	3.3	7
285	Interface engineering of ferroelectricity in thin films of thiophosphate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi><mml:mi>B<td>> <td>row><mml:m< td=""></mml:m<></td></td></mml:mi></mml:mrow></mml:math>	> <td>row><mml:m< td=""></mml:m<></td>	row> <mml:m< td=""></mml:m<>

#	Article	IF	Citations
289	Second harmonic generation and waveguide properties in perovskite Na_05Bi_05TiO_3 nanowires. Optics Letters, 2016, 41, 3803.	3.3	6
290	Triphenylamine–Polystyrene Blends for Perovskite Solar Cells with Simultaneous Energy Loss Suppression and Stability Improvement. Solar Rrl, 2020, 4, 2000490.	5.8	6
291	Trap-Mediated Energy Transfer in Er-Doped Cesium Lead Halide Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 3320-3326.	4.6	6
292	Revealing the many-body interactions and valley-polarization behavior in Re-doped MoS2 monolayers. Applied Physics Letters, 2021, 118 , .	3.3	6
293	An Efficient Deep-Subwavelength Second Harmonic Nanoantenna Based on Surface Plasmon-Coupled Dilute Nitride GaNP Nanowires. Nano Letters, 2021, 21, 3426-3434.	9.1	6
294	Strain-controlled synthesis of ultrathin hexagonal GaTe/MoS2 heterostructure for sensitive photodetection. IScience, 2021, 24, 103031.	4.1	6
295	Nonâ€Traditional Positivelyâ€Biased Narrowâ€Band Perovskite Singleâ€Crystal Photodetectors Enabled by Interfacial Engineering. Advanced Optical Materials, 0, , 2102225.	7. 3	6
296	Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors. Advanced Functional Materials, 2022, 32, .	14.9	6
297	Morphology Deformation and Giant Electronic Band Modulation in Long-Wavelength WS ₂ Moiré Superlattices. Nano Letters, 2022, 22, 5997-6003.	9.1	6
298	Facile preparation of TiO2 nanostructures by direct annealing of the Ti foil. Materials Letters, 2010, 64, 2392-2394.	2.6	5
299	Trapping of surface-plasmon polaritons in a subwavelength cut. Optics Communications, 2011, 284, 153-155.	2.1	5
300	Continuous-wave lasing in halide perovskites. Science China Materials, 2018, 61, 1243-1244.	6.3	5
301	Cavity Engineering of Photon–Phonon Interactions in Si Nanocavities. Nano Letters, 2019, 19, 7950-7956.	9.1	5
302	Optically manipulated nanomechanics of semiconductor nanowires. Chinese Physics B, 2019, 28, 054204.	1.4	5
303	Bottom-up fabrication of semiconducting 2D coordination nanosheets for versatile bioimaging and photodetecting applications. Materials Advances, 2021, 2, 5189-5194.	5.4	5
304	Two ultra-stable novel allotropes of tellurium few-layers*. Chinese Physics B, 2020, 29, 097103.	1.4	5
305	Strong interfacial coupling in vertical WSe2/WS2 heterostructure for high performance photodetection. Applied Physics Letters, 2022, 120, .	3.3	5
306	Room Temperature Fluorescence Blinking in MoS ₂ Atomic Layers by Single Photon Energy Transfer. Laser and Photonics Reviews, 2022, 16, .	8.7	5

#	Article	IF	Citations
307	Simulated emission behaviors from Excitons in CdS nanoribbons. Journal of Physics: Conference Series, 2006, 28, 12-17.	0.4	4
308	BALLISTIC PHONON TRANSPORT THROUGH GAUSSIAN ACOUSTIC NANOCAVITIES. Modern Physics Letters B, 2011, 25, 1631-1642.	1.9	4
309	Synthesis and optical characterizations of chain-like Si@SiSe ₂ nanowire heterostructures. Nanoscale, 2012, 4, 1481-1485.	5.6	4
310	Fabrication and optical waveguide of Sn-catalyzed CdSe microstructures. Solid State Communications, 2013, 167, 31-35.	1.9	4
311	Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain. Frontiers of Physics, 2017, 12, 1.	5.0	4
312	Focus on 2D material nanophotonics. Nanotechnology, 2019, 30, 030201.	2.6	4
313	Low Thresholds and Tunable Modes in Plasmonâ€Assisted Perovskite Microlasers. Advanced Optical Materials, 0, , 2102777.	7.3	4
314	Defect-induced distinct exciton-exciton interactions in WS2 monolayers. Science China Materials, 2022, 65, 2502-2510.	6.3	4
315	Broadband coherent emission observed in polycrystalline CdSSe nanowires under high excitation. Journal of Physics Condensed Matter, 2009, 21, 375302.	1.8	3
316	Ballistic phonon transmission in quasiperiodic acoustic nanocavities. Journal of Applied Physics, 2011, 109, 084310.	2.5	3
317	Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays. Journal of Applied Physics, 2014, 115, 224308.	2.5	3
318	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small, 2015, 11, 2346-2346.	10.0	3
319	Near-infrared photodetection based on erbium chloride borate nanobelts. Applied Physics Express, 2019, 12, 035001.	2.4	3
320	Study on Charge Carriers Behavior at CdS/TiO ₂ Interface of One Dimensional TiO ₂ @CdS Core-shell Structure by Raman Scattering and Surface Photovoltage Spectroscopy. Acta Chimica Sinica, 2013, 71, 634.	1.4	3
321	Enhancing circular polarization of photoluminescence of two-dimensional Ruddlesden–Popper perovskites by constructing van der Waals heterostructures. Applied Physics Letters, 2021, 119, .	3.3	3
322	Picosecond electrical response in graphene/MoTe2 heterojunction with high responsivity in the near infrared region. Fundamental Research, 2022, 2, 405-411.	3.3	3
323	Comparison of the Optical Waveguide Behaviors of Se-Doped and Undoped CdS Nanoribbons by Using Near-Field Optical Microscopy. Journal of Nanoscience and Nanotechnology, 2009, 9, 978-981.	0.9	2
324	Effect of Gaussian acoustic nanocavities in a narrow constriction on ballistic phonon transmission. Applied Physics A: Materials Science and Processing, 2011, 104, 635-642.	2.3	2

#	Article	IF	Citations
325	Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
326	Wang <i>etÂal.</i> Reply:. Physical Review Letters, 2016, 117, 219702.	7.8	2
327	Measuring the local mobility of graphene on semiconductors. Physical Review Materials, 2018, 2, .	2.4	2
328	Gallium doping-assisted giant photoluminescence enhancement of monolayer MoS ₂ grown by chemical vapor deposition. Applied Physics Letters, 2022, 120, 221902.	3.3	2
329	Band Alignment Engineering by Twist Angle and Composition Modulation for Heterobilayer. Small, 2022, 18, .	10.0	2
330	Ballistic phonon transport through a Fibonacci array of acoustic nanocavities in a narrow constriction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2000-2006.	2.1	1
331	Optical waveguide beam splitters based on hybrid metal–dielectric–semiconductor nanostructures. Optics Communications, 2015, 354, 168-173.	2.1	1
332	Oneâ€Photon Excitation Pathway: Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution (Adv. Funct. Mater. 18/2021). Advanced Functional Materials, 2021, 31, 2170125.	14.9	1
333	Polarized photoluminescence spectroscopy in WS ₂ , WSe ₂ atomic layers and heterostructures by cylindrical vector beams*. Chinese Physics B, 2021, 30, 087802.	1.4	1
334	Photoluminescence Enhancement in Thin Two-Dimensional Ruddlesden–Popper Perovskites by Spiro-OMeTAD. Journal of Physical Chemistry C, 0, , .	3.1	1
335	Infrared photodetector based on 2D monoclinic gold phosphide nanosheets yielded from one-step chemical vapor transport deposition. Applied Physics Letters, 2022, 120, 131104.	3.3	1
336	Study of rhodamine B-doped polymer optical waveguides by using scanning near-field optical microscopy., 2005, 6019, 702.		0
337	Color-Tunable Photoluminescence of Alloyed CdSxSe1-x Nanobelts ChemInform, 2006, 37, no.	0.0	0
338	Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 26-30.	0.2	0
339	Effects of contact shape on ballistic phonon transport in semiconductor nanowires. Current Applied Physics, 2012, 12, 437-442.	2.4	0
340	Enhanced luminescent intensity in a free-standing erbium silicate microplate. Journal of Modern Optics, 2019, 66, 1951-1955.	1.3	0
341	Bandgap and Interface Engineering of Two-dimensional Layered Semiconductors. , 2019, , .		0
342	Generalized Multidentate Ligand Chelatingâ€Grafting Strategy for Construction of Amorphous Metal Oxidesâ€Based Tripleâ€Layered Nanotubes. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0