Andrew Klekociuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere. Bulletin of the American Meteorological Society, 2016, 97, 425-453.	3.3	148
2	Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2009, 9, 287-343.	4.9	134
3	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
4	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	2.9	93
5	The 2019/2020 summer of Antarctic heatwaves. Global Change Biology, 2020, 26, 3178-3180.	9.5	71
6	Meteoritic dust from the atmospheric disintegration of a large meteoroid. Nature, 2005, 436, 1132-1135.	27.8	68
7	Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmospheric Chemistry and Physics, 2008, 8, 35-62.	4.9	68
8	Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Annales Geophysicae, 2007, 25, 361-374.	1.6	57
9	Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPSâ€RO satellite constellation. Journal of Geophysical Research, 2009, 114, .	3.3	52
10	Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). Journal of Geophysical Research, 2011, 116, .	3.3	50
11	Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,973.	3.3	49
12	Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice. Atmospheric Chemistry and Physics, 2016, 16, 2185-2206.	4.9	43
13	Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies. Science, 1987, 238, 1260-1264.	12.6	41
14	No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI. Atmospheric Chemistry and Physics, 2018, 18, 11277-11287.	4.9	41
15	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical and Photobiological Sciences, 2022, 21, 275-301.	2.9	40
16	The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. Journal of Geophysical Research, 2011, 116, .	3.3	37
17	Characteristics of the wind, temperature and PMSE field above Davis, Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 418-435.	1.6	33
18	Monthly Diurnal Global Atmospheric Circuit Estimates Derived from Vostok Electric Field Measurements Adjusted for Local Meteorological and Solar Wind Influences. Journals of the Atmospheric Sciences, 2012, 69, 2061-2082.	1.7	33

#	Article	IF	CITATIONS
19	Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,493.	3.3	33
20	Daily Observations of Three Period Jumps of the Vela Pulsar. Australian Journal of Physics, 1987, 40, 725.	0.6	33
21	Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,862.	3.3	32
22	Evaluation of boundaryâ€layer cloud forecasts over the Southern Ocean in a limitedâ€area numerical weather prediction system using <i>in situ</i> , spaceâ€borne and groundâ€based observations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2259-2276.	2.7	29
23	Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability. Cryosphere, 2021, 15, 5061-5077.	3.9	28
24	Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?. Atmospheric Chemistry and Physics, 2015, 15, 13339-13364.	4.9	27
25	First complete season of PMSE observations above Davis, Antarctica, and their relation to winds and temperatures. Geophysical Research Letters, 2007, 34, .	4.0	26
26	Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere. Atmospheric Chemistry and Physics, 2016, 16, 2401-2415.	4.9	26
27	First Southern Hemisphere commonâ€volume measurements of PMC and PMSE. Geophysical Research Letters, 2008, 35, .	4.0	25
28	Ozone profiles in the high-latitude stratosphere and lower mesosphere measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: Comparison with other satellite sensors and ozonesondes. Journal of Geophysical Research, 2006, 111, .	3.3	24
29	Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere. Atmospheric Chemistry and Physics, 2017, 17, 10269-10290.	4.9	24
30	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	4.9	24
31	Beryllium-10 transport to Antarctica: Results from seasonally resolved observations and modeling. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
32	Long-term trends in Antarctic winter hydroxyl temperatures. Journal of Geophysical Research, 2011, 116, .	3.3	20
33	First year of Rayleigh lidar measurements of middle atmosphere temperatures above davis, Antarctica. Advances in Space Research, 2003, 32, 771-776.	2.6	19
34	Small scale structures of NLC observed by lidar at 69°N/69°S and their possible relation to gravity waves. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 244-252.	1.6	19
35	Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmospheric Chemistry and Physics, 2019, 19, 10303-10317.	4.9	19
36	Determining rotational temperatures from the OH(8-3) band, and a comparison with OH(6-2) rotational temperatures at Davis, Antarctica. Annales Geophysicae, 2004, 22, 1549-1561.	1.6	18

#	Article	IF	CITATIONS
37	A study of the relationship between stratospheric gravity waves and polar mesospheric clouds at Davis Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	18
38	Total ozone and tropopause zonal asymmetry during the Antarctic spring. Journal of Geophysical Research, 2008, 113, .	3.3	18
39	Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone. Atmospheric Chemistry and Physics, 2012, 12, 2865-2879.	4.9	18
40	Mixedâ€Phase Clouds and Precipitation in Southern Ocean Cyclones and Cloud Systems Observed Poleward of 64°S by Shipâ€Based Cloud Radar and Lidar. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033626.	3.3	18
41	Inter-hemispheric asymmetry in polar mesosphere summer echoes and temperature at 69° latitude. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 464-469.	1.6	17
42	Low latitude 2â€day planetary wave impact on austral polar mesopause temperatures: revealed by a January diminution in PMSE above Davis, Antarctica. Geophysical Research Letters, 2009, 36, .	4.0	17
43	First observations of Southern Hemisphere polar mesosphere winter echoes including conjugate occurrences at â^1/469°S latitude. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
44	High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69° S, 78° E). Atmospheric Chemistry and Physics, 2013, 13, 3121-3132.	4.9	17
45	Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. International Journal of Remote Sensing, 2020, 41, 7530-7540.	2.9	17
46	The Antarctic ozone hole during 2010. Australian Meteorological Magazine, 2011, 61, 253-267.	0.4	17
47	Antarctic polar plateau vertical electric field variations across heliocentric current sheet crossings. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 639-654.	1.6	16
48	A new height for the summer mesopause: Antarctica, December 2007. Geophysical Research Letters, 2008, 35, .	4.0	16
49	Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmospheric Chemistry and Physics, 2017, 17, 1741-1758.	4.9	15
50	Planetary wave and gravity wave influence on the occurrence of polar stratospheric clouds over Davis Station, Antarctica, seen in lidar and radiosonde observations. Journal of Geophysical Research, 2006, 111, .	3.3	14
51	A comparison of hydroxyl rotational temperatures from Davis (69°S, 78°E) with sodium lidar temperatures from Syowa (69°S, 39°E). Geophysical Research Letters, 2003, 30, .	4.0	13
52	The Antarctic ozone hole during 2008 and 2009. Australian Meteorological Magazine, 2011, 61, 77-90.	0.4	13
53	Interstation correlation of high-latitude lower-stratosphere gravity wave activity: Evidence for planetary wave modulation of gravity waves over Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	12
54	The Antarctic ozone hole during 2018 and 2019. Journal of Southern Hemisphere Earth Systems Science, 2021, 71, 66-91.	1.8	12

#	Article	IF	CITATIONS
55	The Antarctic ozone hole during 2020. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 19-37.	1.8	11
56	Radioastronomy through an artificial ionospheric window: Spacelab 2 observations. Advances in Space Research, 1988, 8, 63-66.	2.6	10
57	Detection of Aerosols in Antarctica From Longâ€Range Transport of the 2009 Australian Wildfires. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032542.	3.3	10
58	Analysis of 24Âyears of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends. Atmospheric Chemistry and Physics, 2020, 20, 6379-6394.	4.9	10
59	No Robust Evidence of Future Changes in Major Stratospheric Sudden Warmings: A Multi-model Assessment from CCMI. Atmospheric Chemistry and Physics, 2018, 18, 11277-11287.	4.9	10
60	Experimental evidence of a stratospheric circulation influence on mesospheric temperatures and ice-particles during the 2010–2011 austral summer at 69°S. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 89, 54-61.	1.6	9
61	Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site. Annales Geophysicae, 2017, 35, 567-582.	1.6	9
62	The state of the atmosphere in the 2016 southern Kerguelen Axis campaign region. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 174, .	1.4	9
63	Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019. Remote Sensing, 2020, 12, 3950.	4.0	8
64	Tropical and mid-latitude forcing of continental Antarctic temperatures. Cryosphere, 2015, 9, 2405-2415.	3.9	7
65	The Antarctic ozone hole during 2011. Australian Meteorological Magazine, 2014, 64, 293-311.	0.4	7
66	Seasonal climate summary southern hemisphere (spring 2014): El Niño continues to try to break through, and Australia has its warmest spring on record (again!). Australian Meteorological Magazine, 2015, 65, 267-292.	0.4	7
67	Validation of reanalysis Southern Ocean atmosphere trends using sea ice data. Atmospheric Chemistry and Physics, 2020, 20, 14757-14768.	4.9	7
68	Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica. Annales Geophysicae, 2008, 26, 3783-3792.	1.6	6
69	Low Ozone Over Southern Australia in August 2011 and its Impact on Solar Ultraviolet Radiation Levels. Photochemistry and Photobiology, 2013, 89, 984-994.	2.5	6
70	Trends in Antarctic ozone hole metrics 2001–17. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 52.	1.8	6
71	Australian Lidar Measurements of Aerosol Layers Associated with the 2015 Calbuco Eruption. Atmosphere, 2020, 11, 124.	2.3	6
72	Interactive effects of body mass changes and speciesâ€specific morphology on flight behavior of chickâ€rearing Antarctic fulmarine petrels under diurnal wind patterns. Ecology and Evolution, 2021, 11, 4972-4991.	1.9	6

#	Article	IF	CITATIONS
73	El Niño–Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South. Climate of the Past, 2021, 17, 1795-1818.	3.4	6
74	Troposphere and stratosphere influence on tropopause in the polar regions during winter and spring. International Journal of Remote Sensing, 2011, 32, 3153-3164.	2.9	5
75	Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century. Atmospheric Chemistry and Physics, 2013, 13, 4413-4427.	4.9	5
76	The Antarctic ozone hole during 2017. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 29.	1.8	5
77	Measurements of Cloud Radiative Effect across the Southern Ocean (43° S–79° S, 63° E–158° W). Atmosphere, 2020, 11, 949.	2.3	5
78	Planetary Wave Spectrum in the Stratosphere–Mesosphere during Sudden Stratospheric Warming 2018. Remote Sensing, 2021, 13, 1190.	4.0	5
79	Influence of planetary waves on total ozone column distribution in northern and southern high latitudes. International Journal of Remote Sensing, 2011, 32, 3179-3186.	2.9	4
80	Trends and Variability in Total Ozone from a Mid-Latitude Southern Hemisphere Site: The Melbourne Dobson Record 1978–2012. Atmosphere - Ocean, 2015, 53, 58-65.	1.6	4
81	Analysis of 24Âyears of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere. Atmospheric Chemistry and Physics, 2020, 20, 8691-8708.	4.9	4
82	Investigation of the Vertical Influence of the 11-Year Solar Cycle on Ozone Using SBUV and Antarctic Ground-Based Measurements and CMIP6 Forcing Data. Atmosphere, 2020, 11, 873.	2.3	4
83	Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 2022, 14, 1496.	4.0	4
84	Rossby Waves in Total Ozone over the Arctic in 2000–2021. Remote Sensing, 2022, 14, 2192.	4.0	4
85	Australian Antarctic lidar facility. , 1994, , .		3
86	The Antarctic ozone hole during 2015 and 2016. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 16.	1.8	3
87	The Antarctic ozone hole during 2012. Australian Meteorological Magazine, 2014, 64, 313-330.	0.4	3
88	Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals. Atmospheric Measurement Techniques, 2022, 15, 3663-3681.	3.1	3
89	The Antarctic ozone hole during 2014. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 1.	1.8	2
90	Constraining ice water content of thin Antarctic cirrus clouds using ground-based lidar and satellite data. Journals of the Atmospheric Sciences, 2021, , .	1.7	2

#	Article	IF	CITATIONS
91	Mid-Latitude Mesospheric Zonal Wave 1 and Wave 2 in Recent Boreal Winters. Remote Sensing, 2021, 13, 3749.	4.0	2
92	Parameters of the O(1S) excitation process deduced from photometer measurements of pulsating aurora. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1799-1814.	0.9	1
93	Automatically guiding a telescope to a laser beam on a biaxial antarctic light detection and ranging system. Optical Engineering, 2007, 46, 116001.	1.0	1
94	The Antarctic ozone hole during 2013. Australian Meteorological Magazine, 2015, 65, 247-266.	0.4	1
95	Preconditions for the ozone hole decrease in 2017. Ukrainian Journal of Remote Sensing, 2018, , 53-58.	0.5	1
96	The Annual Cycle in Mid-Latitude Stratospheric and Mesospheric Ozone Associated with Quasi-Stationary Wave Structure by the MLS Data 2011–2020. Remote Sensing, 2022, 14, 2309.	4.0	1
97	Future changes in stratospheric quasi-stationary wave-1 in the extratropical southern hemisphere spring and summer as simulated by ACCESS-CCM. Journal of Southern Hemisphere Earth Systems Science, 2021, 71, 181.	1.8	Ο