Roger Cone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8776422/publications.pdf Version: 2024-02-01

POCEP CONE

#	Article	IF	CITATIONS
1	Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice. Cell, 1997, 88, 131-141.	13.5	2,796
2	Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 2001, 411, 480-484.	13.7	2,008
3	Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 1997, 385, 165-168.	13.7	1,765
4	The cloning of a family of genes that encode the melanocortin receptors. Science, 1992, 257, 1248-1251.	6.0	1,552
5	Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 2005, 8, 571-578.	7.1	1,315
6	Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature, 1994, 371, 799-802.	13.7	999
7	Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain Molecular Endocrinology, 1994, 8, 1298-1308.	3.7	896
8	Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8856-8860.	3.3	673
9	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	9.4	641
10	A Unique Metalolic Sysdrone Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse. Endocrinology, 2000, 141, 3518-3521.	1.4	637
11	Cloning and expression of human and rat Dt dopamine receptors. Nature, 1990, 347, 76-80.	13.7	580
12	Integration of NPY, AGRP, and Melanocortin Signals in the Hypothalamic Paraventricular Nucleus. Neuron, 1999, 24, 155-163.	3.8	569
13	Exocrine Cland Dysfunction in MC5-R-Deficient Mice: Evidence for Coordinated Regulation of Exocrine Cland Function by Melanocortin Peptides. Cell, 1997, 91, 789-798.	13.5	466
14	Cyclic lactam .alphamelanotropin analogs of Ac-Nle4-cyclo[Asp5,D-Phe7,Lys10]alphamelanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. Journal of Medicinal Chemistry, 1995, 38, 3454-3461.	2.9	353
15	Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nature Neuroscience, 2001, 4, 605-611.	7.1	302
16	A genome-wide association study of anorexia nervosa. Molecular Psychiatry, 2014, 19, 1085-1094.	4.1	282
17	The Central Melanocortin System Can Directly Regulate Serum Insulin Levels*. Endocrinology, 2000, 141, 3072-3079.	1.4	267
18	Fasting Induces a Large, Leptin-Dependent Increase in the Intrinsic Action Potential Frequency of Orexigenic Arcuate Nucleus Neuropeptide Y/Agouti-Related Protein Neurons. Endocrinology, 2005, 146, 1043-1047.	1.4	253

#	Article	IF	CITATIONS
19	The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Endocrine Reviews, 1996, 51, 287-317; discussion 318.	7.1	238
20	Role of the central melanocortin system in cachexia. Cancer Research, 2001, 61, 1432-8.	0.4	234
21	Independent and Additive Effects of Central POMC and Leptin Pathways on Murine Obesity. Science, 1997, 278, 1641-1644.	6.0	223
22	Role of leptin and melanocortin signaling in uremia-associated cachexia. Journal of Clinical Investigation, 2005, 115, 1659-1665.	3.9	218
23	Characterization of the Neuroanatomical Distribution of Agouti-Related Protein Immunoreactivity in the Rhesus Monkey and the Rat*. Endocrinology, 1999, 140, 1408-1415.	1.4	205
24	A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nature Genetics, 1997, 15, 311-315.	9.4	204
25	Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Molecular Metabolism, 2017, 6, 1321-1329.	3.0	200
26	Molecular and pharmacological characterization of dominant black coat color in sheep. Mammalian Genome, 1999, 10, 39-43.	1.0	194
27	A Colorimetric Assay for Measuring Activation of Gs- and Gq-Coupled Signaling Pathways. Analytical Biochemistry, 1995, 226, 349-354.	1.1	192
28	A Unique Metalolic Sysdrone Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse. , 0, .		182
29	G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature, 2015, 520, 94-98.	13.7	152
30	RM-493, a Melanocortin-4 Receptor (MC4R) Agonist, Increases Resting Energy Expenditure in Obese Individuals. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1639-1645.	1.8	147
31	Structure Activity Studies of the Melanocortin-4 Receptor by in Vitro Mutagenesis:  Identification of Agouti-Related Protein (AGRP), Melanocortin Agonist and Synthetic Peptide Antagonist Interaction Determinants. Biochemistry, 2001, 40, 6164-6179.	1.2	146
32	The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 InÂVivo. Cell Metabolism, 2014, 20, 1018-1029.	7.2	139
33	Developmental Control of the Melanocortin-4 Receptor by MRAP2 Proteins in Zebrafish. Science, 2013, 341, 278-281.	6.0	136
34	Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3084-3089.	3.3	136
35	Differential Role of Melanocortin Receptor Subtypes in Cachexia. Endocrinology, 2003, 144, 1513-1523.	1.4	124
36	Altered Expression of Agouti-Related Protein and Its Colocalization with Neuropeptide Y in the Arcuate Nucleus of the Hypothalamus during Lactation*. Endocrinology, 1999, 140, 2645-2650.	1.4	121

#	Article	IF	CITATIONS
37	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	1.7	120
38	60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. Journal of Molecular Endocrinology, 2016, 56, T157-T174.	1.1	118
39	Genetic Models of Obesity and Energy Balance in the Mouse. Annual Review of Genetics, 2000, 34, 687-745.	3.2	110
40	The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides, 2006, 27, 259-264.	1.2	100
41	Determination of the melanocortin-4 receptor structure identifies Ca ²⁺ as a cofactor for ligand binding. Science, 2020, 368, 428-433.	6.0	89
42	A Ligand-Mimetic Model for Constitutive Activation of the Melanocortin-1 Receptor. Molecular Endocrinology, 1998, 12, 592-604.	3.7	80
43	Mahogany (mg) stimulates feeding and increases basal metabolic rate independent of its suppression of agouti. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12707-12712.	3.3	77
44	Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 427-432.	3.3	74
45	Central Melanocortins and the Regulation of Weight During Acute and Chronic Disease. Endocrine Reviews, 2001, 56, 359-376.	7.1	74
46	Regulation of Thyrotropin-Releasing Hormone-Expressing Neurons in Paraventricular Nucleus of the Hypothalamus by Signals of Adiposity. Molecular Endocrinology, 2010, 24, 2366-2381.	3.7	72
47	Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. , 0, .		68
48	Melanocortin-3 receptor regulates the normal fasting response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1489-98.	3.3	67
49	MC3R links nutritional state to childhood growth and the timing of puberty. Nature, 2021, 599, 436-441.	13.7	59
50	Knockout models resulting in the development of obesity. Trends in Genetics, 2001, 17, S50-S54.	2.9	49
51	Altered Expression of Agouti-Related Protein and Its Colocalization with Neuropeptide Y in the Arcuate Nucleus of the Hypothalamus during Lactation. , 0, .		49
52	Regulation of energy rheostasis by the melanocortin-3 receptor. Science Advances, 2018, 4, eaat0866.	4.7	40
53	Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Current Biology, 2019, 29, 2009-2019.e7.	1.8	35
54	Behind melanocortin antagonist overexpression in the zebrafish brain: A behavioral and transcriptomic approach. Hormones and Behavior, 2016, 82, 87-100.	1.0	34

#	Article	IF	CITATIONS
55	The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia. Science Translational Medicine, 2021, 13, .	5.8	31
56	Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish. Scientific Reports, 2017, 7, 44777.	1.6	30
57	Shared genetic risk between eating disorder―and substanceâ€useâ€related phenotypes: Evidence from genomeâ€wide association studies. Addiction Biology, 2021, 26, e12880.	1.4	28
58	The Role of the Melanocortinâ€3 Receptor in Cachexia. Annals of the New York Academy of Sciences, 2003, 994, 258-266.	1.8	25
59	A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling. Scientific Reports, 2017, 7, 3847.	1.6	23
60	Obesityâ€associated mutant melanocortinâ€4 receptors with normal Gα _s coupling frequently exhibit other discoverable pharmacological and biochemical defects. Journal of Neuroendocrinology, 2019, 31, e12795.	1.2	21
61	Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nature Metabolism, 2022, 4, 44-59.	5.1	20
62	G protein–coupled receptors differentially regulate glycosylation and activity of the inwardly rectifying potassium channel Kir7.1. Journal of Biological Chemistry, 2018, 293, 17739-17753.	1.6	14
63	Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortinâ€4 receptor. Journal of Neuroendocrinology, 2019, 31, e12670.	1.2	13
64	Structure-Based Design of Melanocortin 4 Receptor Ligands Based on the SHU-9119-hMC4R Cocrystal Structure. Journal of Medicinal Chemistry, 2021, 64, 357-369.	2.9	12
65	Loss of the melanocortin-4 receptor in mice causes dilated cardiomyopathy. ELife, 2017, 6, .	2.8	12
66	Network dynamics of hypothalamic feeding neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
67	Membrane orientation and oligomerization of the melanocortin receptor accessory protein 2. Journal of Biological Chemistry, 2020, 295, 16370-16379.	1.6	10
68	Leptin Grows Up and Gets a Neural Network. Neuron, 2011, 71, 4-6.	3.8	8
69	A cellular basis for the munchies. Nature, 2015, 519, 38-40.	13.7	7
70	Organization of neural systems expressing melanocortinâ€3 receptors in the mouse brain: Evidence for sexual dimorphism. Journal of Comparative Neurology, 2022, 530, 2835-2851.	0.9	7
71	Characterization of MC4R Regulation of the Kir7.1 Channel Using the Tl+ Flux Assay. Methods in Molecular Biology, 2018, 1684, 211-222.	0.4	6
72	Deletion of the Feeding-Induced Hepatokine TSK Ameliorates the Melanocortin Obesity Syndrome. Diabetes, 2021, 70, 2081-2091.	0.3	6

#	Article	IF	CITATIONS
73	Demonstration of a Common DPhe ⁷ to DNal(2′) ⁷ Peptide Ligand Antagonist Switch for Melanocortin-3 and Melanocortin-4 Receptors Identifies the Systematic Mischaracterization of the Pharmacological Properties of Melanocortin Peptides. Journal of Medicinal Chemistry, 2022, 65, 5990-6000.	2.9	6
74	Functional variants of the melanocortin-4 receptor associated with the Odontoceti and Mysticeti suborders of cetaceans. Scientific Reports, 2017, 7, 5684.	1.6	4
75	Regulation of orexigenic AgRP neurons: A third way?. Trends in Endocrinology and Metabolism, 2015, 26, 339-340.	3.1	3
76	Cardiac Phenotype and Tissue Sodium Content in Adolescents With Defects in the Melanocortin System. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2606-2616.	1.8	3