Craig Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8776361/publications.pdf

Version: 2024-02-01

		126907	1	144013
58	6,849	33		57
papers	citations	h-index		g-index
62	62	62		11882
02	02	02		11002
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Analysis of Plasma Using Flow Cytometry Reveals Increased Immune Cell-Derived Extracellular Vesicles in Untreated Relapsing-Remitting Multiple Sclerosis. Frontiers in Immunology, 2022, 13, 803921.	4.8	6
2	Investigating the <scp>NLRP3</scp> inflammasome and its regulator <scp>miR</scp> â€223â€3p in multiple sclerosis and experimental demyelination. Journal of Neurochemistry, 2022, 163, 94-112.	3.9	4
3	Pro-inflammatory adiponectin in pediatric-onset multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1948-1959.	3.0	9
4	Interleukin-1 receptor antagonist: An exploratory plasma biomarker that correlates with disability and provides pathophysiological insights in relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 52, 103006.	2.0	11
5	TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation. International Journal of Molecular Sciences, 2021, 22, 11576.	4.1	13
6	MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain, 2019, 142, 2979-2995.	7.6	51
7	microRNA dysregulation in neurodegenerative diseases: A systematic review. Progress in Neurobiology, 2019, 182, 101664.	5.7	272
8	Phagocytosis in the Brain: Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 790.	4.8	206
9	Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain, 2019, 142, 617-632.	7.6	72
10	miRâ€223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia, 2019, 67, 857-869.	4.9	42
11	<scp>T</scp> he roles of extracellular vesicle micro <scp>RNA</scp> s in the central nervous system. Glia, 2018, 66, 2267-2278.	4.9	50
12	Differential transcriptional response profiles in human myeloid cell populations. Clinical Immunology, 2018, 189, 63-74.	3.2	15
13	Human central nervous system astrocytes support survival and activation of B cells: implications for MS pathogenesis. Journal of Neuroinflammation, 2018, 15, 114.	7.2	40
14	Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Annals of Clinical and Translational Neurology, 2017, 4, 381-391.	3.7	34
15	A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports, 2017, 8, 1727-1742.	4.8	379
16	Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2679-2690.	4.3	153
17	Comparative morphology and phagocytic capacity of primary human adult microglia with time-lapse imaging. Journal of Neuroimmunology, 2017, 310, 143-149.	2.3	9
18	α7 nicotinic acetylcholine receptor signaling modulates the inflammatory phenotype of fetal brain microglia: first evidence of interference by iron homeostasis. Scientific Reports, 2017, 7, 10645.	3.3	24

#	Article	lF	Citations
19	Immunology of the Brain. , 2016, , 54-62.		О
20	miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation. Frontiers in Cell and Developmental Biology, 2016, 4, 59.	3.7	47
21	Production of <scp>IL</scp> â€27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia, 2016, 64, 553-569.	4.9	56
22	Astrocytes in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1114-1124.	3.0	108
23	Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis. Annals of Clinical and Translational Neurology, 2016, 3, 27-41.	3.7	57
24	MicroRNA Expression Patterns in Human Astrocytes in Relation to Anatomical Location and Age. Journal of Neuropathology and Experimental Neurology, 2016, 75, 156-166.	1.7	35
25	MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. Journal of Immunology, 2016, 196, 3375-3384.	0.8	128
26	Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Frontiers in Cellular Neuroscience, 2015, 9, 294.	3.7	43
27	P2Y12 expression and function in alternatively activated human microglia. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e80.	6.0	139
28	Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015, 138, 1138-1159.	7.6	316
29	Proinflammatory GM-CSF–producing B cells in multiple sclerosis and B cell depletion therapy. Science Translational Medicine, 2015, 7, 310ra166.	12.4	334
30	ISDN2014_0027: REMOVED: Identification of a unique molecular and functional microglia signature in health and disease. International Journal of Developmental Neuroscience, 2015, 47, 5-5.	1.6	1
31	Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. Journal of Immunology, 2015, 194, 761-772.	0.8	75
32	Identification of a unique TGF- $\hat{l}^2\hat{a}$ endeent molecular and functional signature in microglia. Nature Neuroscience, 2014, 17, 131-143.	14.8	2,056
33	The link between multiple sclerosis and depression. Nature Reviews Neurology, 2014, 10, 507-517.	10.1	360
34	A Novel MicroRNA-132-Surtuin-1 Axis Underlies Aberrant B-cell Cytokine Regulation in Patients with Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2014, 9, e105421.	2.5	81
35	Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. Journal of Neuroinflammation, 2013, 10, 41.	7.2	48
36	Over-expression of X-Linked Inhibitor of Apoptosis Protein Modulates Multiple Aspects of Neuronal Ca2+ Signaling. Neurochemical Research, 2013, 38, 847-856.	3.3	0

#	Article	IF	CITATIONS
37	Isolating, Culturing, and Polarizing Primary Human Adult and Fetal Microglia. Methods in Molecular Biology, 2013, 1041, 199-211.	0.9	55
38	miRâ€155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Annals of Neurology, 2013, 74, 709-720.	5.3	189
39	Basis for fluctuations in lymphocyte counts in fingolimod-treated patients with multiple sclerosis. Neurology, 2013, 81, 1768-1772.	1.1	26
40	MMPâ€3 mediates psychosineâ€induced globoid cell formation: Implications for leukodystrophy pathology. Glia, 2013, 61, 765-777.	4.9	33
41	An Alternate Perspective on the Roles of TIMPs and MMPs in Pathology. American Journal of Pathology, 2012, 180, 12-16.	3.8	168
42	Stomatin Inhibits Pannexin-1-Mediated Whole-Cell Currents by Interacting with Its Carboxyl Terminal. PLoS ONE, 2012, 7, e39489.	2.5	18
43	Comparison of polarization properties of human adult microglia and bloodâ€derived macrophages. Glia, 2012, 60, 717-727.	4.9	393
44	MicroRNA dysregulation in multiple sclerosis. Frontiers in Genetics, 2012, 3, 311.	2.3	69
45	Intravenous administration of human embryonic stem cell-derived neural precursor cells attenuates cuprizone-induced central nervous system (CNS) demyelination. Neuropathology and Applied Neurobiology, 2011, 37, 643-653.	3.2	14
46	How factors secreted from astrocytes impact myelin repair. Journal of Neuroscience Research, 2011, 89, 13-21.	2.9	139
47	Effects of IFN-B on TRAIL and Decoy Receptor Expression in Different Immune Cell Populations from MS Patients with Distinct Disease Subtypes. Autoimmune Diseases, 2011, 2011, 1-8.	0.6	6
48	Astrocytic Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination. Journal of Neuroscience, 2011, 31, 6247-6254.	3.6	101
49	Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiology of Aging, 2010, 31, 1238-1249.	3.1	34
50	Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy, 2009, 5, 152-158.	9.1	132
51	Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: Effects of darbepoetin alfa on TIMP-1 null and wild-type mice. Journal of Neuroimmunology, 2009, 211, 92-100.	2.3	41
52	Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Multiple Sclerosis Journal, 2008, 14, 577-594.	3.0	34
53	Inhibitor of apoptosis protein (IAP) profiling in experimental autoimmune encephalomyelitis (EAE) implicates increased XIAP in T lymphocytes. Journal of Neuroimmunology, 2008, 193, 94-105.	2.3	12
54	Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2008, 203, 79-93.	2.3	17

#	Article	IF	CITATIONS
55	Targeting Apoptosis to Treat Multiple Sclerosis. Current Drug Discovery Technologies, 2008, 5, 75-77.	1.2	17
56	X-linked Inhibitor of Apoptosis Regulates T Cell Effector Function. Journal of Immunology, 2007, 179, 7553-7560.	0.8	25
57	Neuroanatomical and pharmacological assessment of Fos expression induced in the rat brain by the phosphodiesterase-4 inhibitor 6-(4-pyridylmethyl)-8-(3-nitrophenyl) quinoline. Neuropharmacology, 2006, 51, 974-985.	4.1	20

Peripheral Phosphodiesterase 4 Inhibition Produced by 4-[2-(3,4-Bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]-3-methylpyridine-1-oxide (L-826,141) Prevents Experimental Autoimmune Encephalomyelitis. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 63-72. 58