List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8776284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic properties of hematite nanoparticles. Physical Review B, 2000, 61, 6826-6838.	1.1	344
2	Dynamics of an Interacting Particle System: Evidence of Critical Slowing Down. Physical Review Letters, 1997, 79, 5154-5157.	2.9	339
3	Magnetic interactions between nanoparticles. Beilstein Journal of Nanotechnology, 2010, 1, 182-190.	1.5	299
4	Estimation of blocking temperatures from ZFC/FC curves. Journal of Magnetism and Magnetic Materials, 1999, 203, 214-216.	1.0	226
5	Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Physical Review B, 2000, 62, 1124-1135.	1.1	197
6	Planar Hall effect sensor for magnetic micro- and nanobead detection. Applied Physics Letters, 2004, 84, 4729-4731.	1.5	181
7	Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. Journal of Physics Condensed Matter, 2007, 19, 213202.	0.7	163
8	Static Scaling on an Interacting Magnetic Nanoparticle System. Physical Review Letters, 1998, 81, 3976-3979.	2.9	158
9	Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. Journal of Magnetism and Magnetic Materials, 2005, 293, 597-604.	1.0	133
10	Onâ€Chip Manipulation of Proteinâ€Coated Magnetic Beads via Domainâ€Wall Conduits. Advanced Materials, 2010, 22, 2706-2710.	11,1	131
11	Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosensors and Bioelectronics, 2020, 165, 112356.	5.3	128
12	Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers. Journal of Physical Chemistry C, 2018, 122, 3068-3077.	1.5	107
13	Particle interaction effects in antiferromagnetic NiO nanoparticles. Journal of Magnetism and Magnetic Materials, 2000, 221, 32-36.	1.0	100
14	Dynamics of Magnetic Nanoparticles Studied by Neutron Scattering. Physical Review Letters, 1997, 79, 4910-4913.	2.9	91
15	Critical dynamics of an interacting magnetic nanoparticle system. Journal of Physics Condensed Matter, 2002, 14, 4901-4914.	0.7	88
16	Planar Hall effect bridge magnetic field sensors. Applied Physics Letters, 2010, 97, .	1.5	75
17	On the â€~centre of gravity' method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via ⁵⁷ Fe Mössbauer spectroscopy. Journal Physics D: Applied Physics, 2017, 50, 265005.	1.3	75
18	Dualâ€Function Cobalt–Nickel Nanoparticles Tailored for Highâ€Temperature Inductionâ€Heated Steam Methane Reforming. Angewandte Chemie - International Edition, 2018, 57, 10569-10573.	7.2	75

MIKKEL FOUCT HANSEN

#	Article	IF	CITATIONS
19	Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars. Analytical Chemistry, 2017, 89, 11484-11490.	3.2	74
20	Nonequilibrium dynamics in an interacting Fe-C nanoparticle system. Physical Review B, 2000, 61, 1261-1266.	1.1	69
21	On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator. Lab on A Chip, 2005, 5, 1315.	3.1	69
22	Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosensors and Bioelectronics, 2011, 26, 3633-3640.	5.3	69
23	Magnetic microbead detection using the planar Hall effect. Journal of Magnetism and Magnetic Materials, 2005, 293, 677-684.	1.0	68
24	Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures. ACS Nano, 2017, 11, 1798-1806.	7.3	67
25	Estimation of Nanoparticle Size Distributions by Image Analysis. Journal of Nanoparticle Research, 2000, 2, 267-277.	0.8	66
26	Magnetic domain wall conduits for single cell applications. Lab on A Chip, 2011, 11, 2976.	3.1	65
27	Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples. ACS Nano, 2015, 9, 7374-7382.	7.3	65
28	CRISPR-Cas12a based internal negative control for nonspecific products of exponential rolling circle amplification. Nucleic Acids Research, 2020, 48, e30-e30.	6.5	65
29	Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 14006-14013.	1.8	64
30	Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 2015, 5, 16145.	1.6	62
31	Novel Readout Method for Molecular Diagnostic Assays Based on Optical Measurements of Magnetic Nanobead Dynamics. Analytical Chemistry, 2015, 87, 1622-1629.	3.2	60
32	Microelectromagnet for magnetic manipulation in lab-on-a-chip systems. Journal of Magnetism and Magnetic Materials, 2006, 300, 418-426.	1.0	59
33	Classification of Magnetic Nanoparticle Systems—Synthesis, Standardization and Analysis Methods in the NanoMag Project. International Journal of Molecular Sciences, 2015, 16, 20308-20325.	1.8	59
34	Microfluidic magnetic separator using an array of soft magnetic elements. Journal of Applied Physics, 2006, 99, 08P102.	1.1	57
35	Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems. Journal of Magnetism and Magnetic Materials, 2005, 293, 578-583.	1.0	53
36	Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit. Biosensors and Bioelectronics, 2015, 67, 649-655.	5.3	50

#	Article	IF	CITATIONS
37	Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sensors and Actuators A: Physical, 2008, 145-146, 430-436.	2.0	49
38	Improving performance of induction-heated steam methane reforming. Catalysis Today, 2020, 342, 13-20.	2.2	47
39	Magnetic Properties of Nanoparticles of Antiferromagnetic Materials. Hyperfine Interactions, 2002, 144/145, 347-357.	0.2	45
40	Uniform excitations in magnetic nanoparticles. Beilstein Journal of Nanotechnology, 2010, 1, 48-54.	1.5	43
41	Amorphous soft magnetic particles produced by spark erosion. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 1-6.	1.0	42
42	Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors. Biosensors and Bioelectronics, 2013, 40, 147-152.	5.3	42
43	Bead magnetorelaxometry with an on-chip magnetoresistive sensor. Lab on A Chip, 2011, 11, 296-302.	3.1	40
44	Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads. Biosensors and Bioelectronics, 2016, 85, 351-357.	5.3	40
45	Magnetic fluctuations in nanosized goethite (α-FeOOH) grains. Journal of Physics Condensed Matter, 2009, 21, 016007.	0.7	39
46	On-Particle Rolling Circle Amplification-Based Core–Satellite Magnetic Superstructures for MicroRNA Detection. ACS Applied Materials & Interfaces, 2018, 10, 2957-2964.	4.0	39
47	Capture of DNA in microfluidic channel using magnetic beads: Increasing capture efficiency with integrated microfluidic mixer. Journal of Magnetism and Magnetic Materials, 2007, 311, 396-400.	1.0	38
48	The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy. Journal of Physics Condensed Matter, 2006, 18, 4161-4175.	0.7	37
49	On hip Detection of Rolling Circle Amplified DNA Molecules from <i>Bacillus Globigii</i> Spores and <i>Vibrio Cholerae</i> . Small, 2014, 10, 2877-2882.	5.2	37
50	Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping. Biosensors and Bioelectronics, 2014, 52, 445-451.	5.3	36
51	On the interpretation of Mössbauer spectra of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 445, 11-21.	1.0	36
52	Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump. Physical Review E, 2007, 76, 056305.	0.8	35
53	Composition-dependent variation of magnetic properties and interstitial ordering in homogeneous expanded austenite. Acta Materialia, 2016, 106, 32-39.	3.8	35
54	Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein. Biosensors and Bioelectronics, 2017, 88, 94-100.	5.3	35

MIKKEL FOUGT HANSEN

#	Article	IF	CITATIONS
55	MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies. ACS Sensors, 2018, 3, 1884-1891.	4.0	35
56	Dualâ€Function Cobalt–Nickel Nanoparticles Tailored for Highâ€Temperature Inductionâ€Heated Steam Methane Reforming. Angewandte Chemie, 2018, 130, 10729-10733.	1.6	34
57	Ultrasensitive Real-Time Rolling Circle Amplification Detection Enhanced by Nicking-Induced Tandem-Acting Polymerases. Analytical Chemistry, 2019, 91, 10102-10109.	3.2	34
58	Mesostructured Iron Oxyhydroxides. 1. Synthesis, Local Structure, and Magnetism. Chemistry of Materials, 2001, 13, 1453-1466.	3.2	33
59	Exchange-biased planar Hall effect sensor optimized for biosensor applications. Journal of Applied Physics, 2008, 103, .	1.1	33
60	Turn-on optomagnetic bacterial DNA sequence detection using volume-amplified magnetic nanobeads. Biosensors and Bioelectronics, 2015, 66, 405-411.	5.3	33
61	Ultrasonic welding for fast bonding of self-aligned structures in lab-on-a-chip systems. Lab on A Chip, 2015, 15, 1998-2001.	3.1	32
62	Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS Nano, 2017, 11, 8864-8870.	7.3	32
63	Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers. Biomedical Microdevices, 2007, 9, 195-205.	1.4	31
64	Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles. Nanotechnology, 2018, 29, 425705.	1.3	31
65	The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements. Journal of Physics Condensed Matter, 2008, 20, 345209.	0.7	30
66	Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales. Microfluidics and Nanofluidics, 2008, 4, 565-573.	1.0	29
67	Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout. ACS Sensors, 2016, 1, 1228-1234.	4.0	29
68	Blu-ray based optomagnetic aptasensor for detection of small molecules. Biosensors and Bioelectronics, 2016, 75, 396-403.	5.3	29
69	Characterization of fine particles using optomagnetic measurements. Physical Chemistry Chemical Physics, 2017, 19, 8802-8814.	1.3	29
70	Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions. Nanoscale, 2018, 10, 2052-2066.	2.8	29
71	Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array. Biosensors and Bioelectronics, 2017, 93, 155-160.	5.3	28
72	Spin-glass-like transition in a highly concentrated Fe–C nanoparticle system. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1315-1316.	1.0	27

MIKKEL FOUCT HANSEN

#	Article	IF	CITATIONS
73	Relaxation in interacting nanoparticle systems. Journal of Molecular Liquids, 2004, 114, 131-135.	2.3	27
74	Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection. Microfluidics and Nanofluidics, 2010, 8, 393-402.	1.0	27
75	Microstripes for transport and separation of magnetic particles. Biomicrofluidics, 2012, 6, 024110.	1.2	26
76	On the interpretation of magnetization data for antiferromagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2006, 305, 95-99.	1.0	25
77	Size-dependent effects in exchange-biased planar Hall effect sensor crosses. Journal of Applied Physics, 2011, 109, .	1.1	25
78	Low-frequency noise in planar Hall effect bridge sensors. Sensors and Actuators A: Physical, 2011, 171, 212-218.	2.0	25
79	Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of Dengue serotype 2 synthetic DNA. Analyst, The, 2017, 142, 3441-3450.	1.7	25
80	A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device. Journal of Micromechanics and Microengineering, 2013, 23, 074002.	1.5	24
81	Magnetic dynamics of fine particles studied by inelastic neutron scattering. Journal of Magnetism and Magnetic Materials, 2000, 221, 10-25.	1.0	23
82	An inelastic neutron scattering study of hematite nanoparticles. Journal of Magnetism and Magnetic Materials, 2003, 266, 68-78.	1.0	23
83	Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude. Journal of Applied Physics, 2008, 103, 07E902.	1.1	23
84	Integration of rolling circle amplification and optomagnetic detection on a polymer chip. Biosensors and Bioelectronics, 2019, 142, 111485.	5.3	23
85	Nicking-assisted on-loop and off-loop enzymatic cascade amplification for optomagnetic detection of a highly conserved dengue virus sequence. Biosensors and Bioelectronics, 2020, 160, 112219.	5.3	23
86	Multi-scale magnetic nanoparticle based optomagnetic bioassay for sensitive DNA and bacteria detection. Analytical Methods, 2016, 8, 5009-5016.	1.3	22
87	Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field. Journal of Applied Physics, 2008, 103, .	1.1	21
88	Self-Assembled Magnetic Nanoparticle–Graphene Oxide Nanotag for Optomagnetic Detection of DNA. ACS Applied Nano Materials, 2019, 2, 1683-1690.	2.4	21
89	A neutron scattering study of spin precession in ferrimagnetic maghemite nanoparticles. Europhysics Letters, 2001, 54, 526-532.	0.7	20
90	On the analysis of magnetization and Mössbauer data for ferritin. Nanotechnology, 2008, 19, 315712.	1.3	20

#	Article	IF	CITATIONS
91	Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field. Journal of Applied Physics, 2010, 107, .	1.1	20
92	Modelling and design of planar Hall effect bridge sensors for low-frequency applications. Sensors and Actuators A: Physical, 2013, 189, 459-465.	2.0	20
93	Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control. Journal of Micromechanics and Microengineering, 2014, 24, 125007.	1.5	20
94	On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor. Journal of Magnetism and Magnetic Materials, 2015, 380, 215-220.	1.0	20
95	The copper binding properties of metformin – QCM-D, XPS and nanobead agglomeration. Chemical Communications, 2015, 51, 17313-17316.	2.2	20
96	Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform. Biomedical Microdevices, 2008, 10, 769-776.	1.4	19
97	On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions. Applied Physics Letters, 2011, 98, 073702.	1.5	19
98	Combined detection of C-reactive protein and PBMC quantification from whole blood in an integrated lab-on-a-disc microfluidic platform. Sensors and Actuators B: Chemical, 2018, 272, 634-642.	4.0	19
99	Bead Capture on Magnetic Sensors in a Microfluidic System. IEEE Sensors Journal, 2009, 9, 682-688.	2.4	17
100	Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor. AlP Conference Proceedings, 2010, , .	0.3	17
101	Exchange-Biased AMR Bridges for Magnetic Field Sensing and Biosensing. IEEE Transactions on Magnetics, 2017, 53, 1-11.	1.2	17
102	Towards a programmable magnetic bead microarray in a microfluidic channel. Journal of Magnetism and Magnetic Materials, 2007, 311, 409-415.	1.0	15
103	Temperature effects in exchange-biased planar hall sensors for bioapplications. Sensors and Actuators A: Physical, 2009, 156, 103-108.	2.0	15
104	Exchange-spring permanent magnet particles produced by spark-erosion. Applied Physics Letters, 2003, 82, 1574-1576.	1.5	14
105	Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system. Lab on A Chip, 2010, 10, 1841.	3.1	14
106	A magnetic adsorbentâ€based process for semiâ€continuous PEGylation of proteins. Biotechnology Journal, 2011, 6, 396-409.	1.8	14
107	Planar Hall effect bridge geometries optimized for magnetic bead detection. Journal of Applied Physics, 2014, 115, .	1.1	14
108	Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field. Journal of Magnetism and Magnetic Materials, 2015, 380, 209-214.	1.0	14

MIKKEL FOUCT HANSEN

#	Article	IF	CITATIONS
109	Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation. Biosensors and Bioelectronics, 2017, 98, 285-291.	5.3	14
110	Martensite formation in Fe-C alloys at cryogenic temperatures. Scripta Materialia, 2017, 141, 129-132.	2.6	14
111	Optimized CoNi Nanoparticle Composition for Curie-Temperature-Controlled Induction-Heated Catalysis. ACS Applied Nano Materials, 2021, 4, 11537-11544.	2.4	14
112	Magnetic dynamics of small α-Fe2O3 and NiO particles studied by neutron scattering. European Physical Journal D, 1999, 9, 491-494.	0.6	13
113	Establishing exchange bias belowTNwith polycrystallineNi0.52Co0.48Oâ^•Cobilayers. Physical Review B, 2005, 72, .	1.1	13
114	A Mössbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads. Journal of Magnetism and Magnetic Materials, 2008, 320, 2099-2105.	1.0	13
115	Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array. Biomedical Microdevices, 2011, 13, 353-359.	1.4	13
116	On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm Journal of Applied Physics, 2013, 113, 154507.	1.1	13
117	Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	13
118	On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors. Scientific Reports, 2015, 5, 12282.	1.6	13
119	Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel. Materials Science and Technology, 2015, 31, 115-122.	0.8	12
120	Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors. Journal of Applied Physics, 2015, 118, .	1.1	12
121	Uncertainty budget for determinations of mean isomer shift from Mössbauer spectra. Hyperfine Interactions, 2016, 237, 1.	0.2	12
122	Memory effects in an interacting magnetic nano-particle sample. Physica B: Condensed Matter, 2000, 284-288, 1754-1755.	1.3	11
123	Interactions between goethite particles subjected to heat treatment. Journal of Physics Condensed Matter, 2008, 20, 135215.	0.7	11
124	Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection. Journal of Applied Physics, 2016, 119, .	1.1	11
125	Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays. Mikrochimica Acta, 2019, 186, 528.	2.5	11
126	Isothermal Martensite Formation at Sub-Zero Temperatures. Journal of ASTM International, 2011, 8, 1-9.	0.2	11

#	Article	IF	CITATIONS
127	Comment on "Magnetic Relaxation of Interacting Co Clusters: Crossover from Two- to Three-Dimensional Lattices― Physical Review Letters, 2003, 90, 059705; author reply 059706.	2.9	10
128	Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity. Journal of Geophysical Research, 2008, 113, .	3.3	10
129	Double layer resist process scheme for metal lift-off with application in inductive heating of microstructures. Microelectronic Engineering, 2010, 87, 1226-1228.	1.1	10
130	Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor. Lab on A Chip, 2017, 17, 2256-2263.	3.1	10
131	Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. Journal of Magnetism and Magnetic Materials, 2019, 471, 286-293.	1.0	10
132	Mesostructured Iron Oxyhydroxides. 2. Soft Hydrothermal Restructuring Processes. Chemistry of Materials, 2001, 13, 1467-1472.	3.2	8
133	1.04 Magnetic Nanoparticles. , 2019, , 89-140.		8
134	Automated on-chip analysis of tuberculosis drug-resistance mutation with integrated DNA ligation and amplification. Analytical and Bioanalytical Chemistry, 2020, 412, 2705-2710.	1.9	8
135	Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles. Metrologia, 2022, 59, 015001.	0.6	8
136	Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray. Acta Biomaterialia, 2010, 6, 3936-3946.	4.1	7
137	Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems. Journal of Micromechanics and Microengineering, 2016, 26, 067001.	1.5	7
138	Optomagnetic detection of DNA triplex nanoswitches. Analyst, The, 2017, 142, 582-585.	1.7	7
139	Burst pressure of phaseguide structures of different heights in all-polymer microfluidic channels. Journal of Micromechanics and Microengineering, 2017, 27, 125015.	1.5	7
140	On-Chip DNA Analysis of Tuberculosis Based on Magnetic Nanoparticle Clustering Induced by Rolling Circle Amplification Products. IEEE Magnetics Letters, 2020, 11, 1-5.	0.6	7
141	Magnetic properties of non-interacting Fe-C nanoparticles. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 928-930.	1.0	6
142	Magnetic phase of the Fe-containing inclusions in synthetic diamond grits. Physica B: Condensed Matter, 2002, 321, 29-36.	1.3	6
143	Planar Hall effect sensor with magnetostatic compensation layer. Sensors and Actuators A: Physical, 2012, 174, 1-8.	2.0	6
144	On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain. Journal of Applied Physics, 2013, 113, 234508.	1.1	6

#	Article	IF	CITATIONS
145	Comment on "Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure―[J. Appl. Phys. 113 , 063903 (2013)]. Journal of Applied Physics, 2013, 114, .	1.1	6
146	Geometrical optimization of microstripe arrays for microbead magnetophoresis. Biomicrofluidics, 2015, 9, 054123.	1.2	6
147	Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction. Journal of Magnetism and Magnetic Materials, 2015, 380, 191-196.	1.0	6
148	Anomalous kinetics of lath martensite formation in stainless steel. Materials Science and Technology, 2015, 31, 1355-1361.	0.8	6
149	3 <i>ω</i> correction method for eliminating resistance measurement error due to Joule heating. Review of Scientific Instruments, 2021, 92, 094711.	0.6	6
150	On-chip measurements of Brownian relaxation vs. concentration of 40 nm magnetic beads. Journal of Applied Physics, 2012, 112, 124512.	1.1	4
151	Magnetoresistive sensors for measurements of DNA hybridization kinetics – effect of TINA modifications. Scientific Reports, 2017, 7, 41940.	1.6	4
152	Realâ€ŧime analysis of switchable nanocomposites of magnesium pyrophosphates and rolling circle amplification products. ChemNanoMat, 2020, 6, 1276-1282.	1.5	4
153	Optomagnetic Detection of Rolling Circle Amplification Products. Methods in Molecular Biology, 2020, 2063, 3-15.	0.4	4
154	Martensitbildung in Fe-basierten Legierungen wĤrend der ErwĤmung von Stickstoff- Siedetemperatur*. HTM - Journal of Heat Treatment and Materials, 2016, 71, 12-19.	0.1	4
155	RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500. Journal of Geophysical Research, 2011, 116, .	3.3	3
156	Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors. PLoS ONE, 2015, 10, e0141115.	1.1	3
157	Effect of carbon on interstitial ordering and magnetic properties of ε-Fe2(N,C)1 Journal of Alloys and Compounds, 2017, 694, 282-291.	2.8	3
158	Effective electrical resistivity in a square array of oriented square inclusions. Nanotechnology, 2021, 32, 185706.	1.3	3
159	Title is missing!. Hyperfine Interactions, 2001, 136, 35-44.	0.2	2
160	Bead capture and release on a magnetic sensor in a microfluidic system. , 2008, , .		2
161	Structure and dynamics of magnetic nanoparticles. Physica B: Condensed Matter, 2000, 276-278, 830-832.	1.3	1
162	Sensor Systems with Magnetic and Optomagnetic Readout of Rolling Circle Amplification Products. , 2016, , 123-138.		1

#	Article	IF	CITATIONS
163	Isothermal Martensite Formation at Sub-Zero Temperatures. , 2012, , 44-56.		1
164	Magnetic Properties of Nanoparticles of Antiferromagnetic Materials. , 2003, , 347-357.		0
165	Isothermal Martensite Formation at Sub-Zero Temperatures. , 2012, , 44-56.		0