List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8776091/publications.pdf Version: 2024-02-01

		126708	161609
94	3,412	33	54
papers	citations	h-index	g-index
115	115	115	2605
115	115	115	3695
all docs	docs citations	times ranked	citing authors

ΗΛΙΙΙΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	General Copperâ€Catalyzed Transformations of Functional Groups from Arylboronic Acids in Water. Chemistry - A European Journal, 2011, 17, 5652-5660.	1.7	241
2	Synthesis of Cellulose- <i>graft</i> -Poly(<i>N</i> , <i>N</i> -dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules, 2008, 9, 2615-2620.	2.6	191
3	Roomâ€Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides. Angewandte Chemie - International Edition, 2017, 56, 874-879.	7.2	149
4	Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Organic Letters, 2016, 18, 5248-5251.	2.4	127
5	An N-(acetoxy)phthalimide motif as a visible-light pro-photosensitizer in photoredox decarboxylative arylthiation. Chemical Communications, 2016, 52, 12909-12912.	2.2	102
6	Metal-Free <i>Ortho</i> C–H Borylation of 2-Phenoxypyridines under Mild Conditions. Organic Letters, 2012, 14, 2618-2621.	2.4	90
7	Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of α-Amino Acid Derivatives. Organic Letters, 2017, 19, 1016-1019.	2.4	88
8	Visible-Light-Mediated Aerobic Oxidation of <i>N</i> -Alkylpyridinium Salts under Organic Photocatalysis. Journal of the American Chemical Society, 2017, 139, 14237-14243.	6.6	87
9	Concise copper-catalyzed one-pot tandem synthesis of benzimidazo[1,2-b]isoquinolin-11-one derivatives. Chemical Communications, 2010, 46, 4172.	2.2	83
10	Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of <i>N</i> -(Acetoxy)phthalimides. Organic Letters, 2016, 18, 6400-6403.	2.4	82
11	Visible-Light Photoredox Synthesis of Chiral α-Selenoamino Acids. Organic Letters, 2016, 18, 1968-1971.	2.4	79
12	Iron or boron-catalyzed C–H arylthiation of substituted phenols at room temperature. Chemical Communications, 2014, 50, 8875-8877.	2.2	76
13	Metalâ€Free Trifluoromethylation and Arylation of Alkenes: Domino Synthesis of Oxindole Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 1021-1028.	2.1	73
14	Visible-light photoredox synthesis of internal alkynes containing quaternary carbons. Chemical Communications, 2016, 52, 7292-7294.	2.2	70
15	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chemistry, 2020, 22, 4357-4363.	4.6	68
16	Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution, 2009, 157, 49-56.	3.7	64
17	Visible Light as a Sole Requirement for Intramolecular C(sp ³)–H Imination. Organic Letters, 2017, 19, 1994-1997.	2.4	60
18	Copperâ€Catalyzed Synthesis of 1,2,4â€Benzothiadiazine 1,1â€Dioxide Derivatives by Coupling of 2â€Halobenzenesulfonamides with Amidines. Advanced Synthesis and Catalysis, 2009, 351, 1999-2004.	2.1	54

#	Article	IF	CITATIONS
19	Transition Metalâ€Free Trifluoromethylation of <i>N</i> â€Allylamides with Sodium Trifluoromethanesulfinate: Synthesis of Trifluoromethylâ€Containing Oxazolines. Advanced Synthesis and Catalysis, 2014, 356, 3669-3675.	2.1	53
20	Copperâ€Catalyzed Domino Synthesis of Benzimidazo[2,1â€ <i>b</i>]quin―azolinâ€12(6 <i>H</i>)â€ones Usina Cyanamide as a Building Block. Advanced Synthesis and Catalysis, 2012, 354, 477-482.	^g 2.1	52
21	Copperâ€Catalyzed Aerobic Oxidative CH and CC Functionalization of 1â€{2â€(Arylamino)aryl]ethanones Leading to Acridone Derivatives. Chemistry - A European Journal, 2013, 19, 4271-4277.	1.7	52
22	Simple and Efficient Copper-Catalyzed Approach to 2,4-Disubstituted Imidazolones. Organic Letters, 2010, 12, 3128-3131.	2.4	50
23	Visible-light photoredox synthesis of unnatural chiral α-amino acids. Scientific Reports, 2016, 6, 26161.	1.6	49
24	Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds. Chemical Communications, 2016, 52, 8862-8864.	2.2	47
25	Super-Slippery Degraded Black Phosphorus/Silicon Dioxide Interface. ACS Applied Materials & Interfaces, 2020, 12, 7717-7726.	4.0	46
26	Functionalizations of Aryl CH Bonds in 2â€Arylpyridines <i>via</i> Sequential Borylation and Copper Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 2211-2217.	2.1	41
27	Copperâ€Catalyzed Selective Oxidative Acylation of Secondary Anilines with Ethyl Glyoxalate: Domino Synthesis of Indolineâ€2,3â€diones. Advanced Synthesis and Catalysis, 2013, 355, 1169-1176.	2.1	40
28	Facile preparation of paper substrates coated with different materials and their applications in paper spray mass spectrometry. Analytical Methods, 2015, 7, 5381-5386.	1.3	40
29	Visible-Light Photoredox Difluoromethylation of Phenols and Thiophenols with Commercially Available Difluorobromoacetic Acid. Organic Letters, 2017, 19, 2758-2761.	2.4	39
30	Chiral Cyclic Ligand-Enabled Iridium-Catalyzed Asymmetric Arylation of Unactivated Racemic Allylic Alcohols with Anilines. Organic Letters, 2017, 19, 3775-3778.	2.4	37
31	Photocatalyst-Free Visible-Light Photoredox Dearomatization of Phenol Derivatives Containing Ketoximes: An Easy Access to Spiropyrrolines. Organic Letters, 2019, 21, 1799-1803.	2.4	37
32	Arylthiolation of Arylamine Derivatives with (Arylthio)―pyrrolidineâ€2,5â€diones. Advanced Synthesis and Catalysis, 2015, 357, 481-488.	2.1	36
33	Roomâ€Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides. Angewandte Chemie, 2017, 129, 892-897.	1.6	36
34	Organocatalytic Atroposelective Construction of Axially Chiral <i>N</i> -Aryl Benzimidazoles Involving Carbon–Carbon Bond Cleavage. Organic Letters, 2020, 22, 6382-6387.	2.4	36
35	Copper-catalyzed aerobic oxidative synthesis of aromatic carboxylic acids. Chemical Communications, 2011, 47, 2348-2350.	2.2	35
36	Iron-Catalyzed Diastereoselective Synthesis of Unnatural Chiral Amino Acid Derivatives. Organic Letters, 2016, 18, 3362-3365.	2.4	34

#	Article	IF	CITATIONS
37	Copper-catalyzed bis-arylations of alkenes leading to oxindole derivatives. Organic and Biomolecular Chemistry, 2014, 12, 4070-4073.	1.5	33
38	Metal-free oxysulfenylation of alkenes with 1-(arylthio)pyrrolidine-2,5-diones and alcohols. Organic and Biomolecular Chemistry, 2015, 13, 4846-4850.	1.5	32
39	Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry, 2013, 33, 213-221.	1.4	31
40	Observation of Replacement of Carbon in Benzene with Nitrogen in a Low-Temperature Plasma. Scientific Reports, 2013, 3, 3481.	1.6	30
41	Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality. Chemical Communications, 2020, 56, 12648-12651.	2.2	30
42	General and efficient copper-catalyzed aerobic oxidative synthesis of N-fused heterocycles using amino acids as the nitrogen source. RSC Advances, 2013, 3, 15636.	1.7	29
43	Metalâ€Free Oxidative C–H Amidation of <i>N</i> , <i>N′</i> â€Diarylureas with PhI(OAc) ₂ : Synthesis of Benzimidazolâ€2â€one Derivatives. European Journal of Organic Chemistry, 2015, 2015, 5869-5875.	1.2	26
44	Efficient Copperâ€Catalyzed Synthesis of Polyâ€Nâ€Heterocycles Containing Amino Acid Residues. Chemistry - A European Journal, 2011, 17, 6765-6771.	1.7	25
45	Axially Chiral Cyclic Phosphoric Acid Enabled Enantioselective Sequential Additions. Organic Letters, 2019, 21, 2498-2503.	2.4	25
46	A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical Communications, 2020, 56, 12443-12446.	2.2	25
47	Copperâ€Catalyzed Domino Synthesis of Isoquinolino[2,3â€ <i>a</i>]quinazolinones. Advanced Synthesis and Catalysis, 2012, 354, 1579-1584.	2.1	24
48	Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base. Chemical Communications, 2013, 49, 517-519.	2.2	24
49	Efficient Synthesis of Dibenzoxaborininols from Diaryl Ethers and Their Application to Dibenzofuran Synthesis. Advanced Synthesis and Catalysis, 2013, 355, 3625-3632.	2.1	24
50	Metal-Free Iodination of Arylboronic Acids and the Synthesis of Biaryl Derivatives. Synlett, 2014, 25, 995-1000.	1.0	24
51	Metal-free UV-Vis-light-induced aerobic oxidative hydroxylation of arylboronic acids in the absence of a photosensitizer. RSC Advances, 2014, 4, 12977.	1.7	23
52	Catalystâ€Free Isothiocyanatoalkylthiation of Styrenes with (Alkylthio)pyrrolidineâ€2,5â€diones and Trimethylsilyl Isothiocyanate. Advanced Synthesis and Catalysis, 2016, 358, 1794-1800.	2.1	22
53	Iron atalyzed Azidoalkylthiation of Alkenes with Trimethylsilyl Azide and 1â€{Alkylthio)pyrrolidineâ€2,5â€diones. Advanced Synthesis and Catalysis, 2016, 358, 2806-2810.	2.1	21
54	Iron-Catalyzed Arylsulfonylation of Activated Alkenes. Synlett, 2015, 26, 688-694.	1.0	20

#	Article	IF	CITATIONS
55	Copper-catalyzed N-arylation and aerobic oxidative C–H/C–H coupling: one-pot synthesis of indoloimidazoquinoline derivatives. RSC Advances, 2013, 3, 8211.	1.7	19
56	Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. Chinese Chemical Letters, 2014, 25, 715-719.	4.8	19
57	Controlled synthesis of mesocrystal magnesium oxide parallelogram and its catalytic performance. CrystEngComm, 2015, 17, 2642-2650.	1.3	19
58	Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	19
59	Salt-induced silk gel-derived N and trace Fe co-doped 3D porous carbon as an oxygen reduction catalyst in microbial fuel cells. Nanoscale, 2019, 11, 13431-13439.	2.8	18
60	Iridium-Catalyzed Enantioselective Synthesis of Dihydroimidazoquinazolinones by Elaborate Tuning of Chiral Cyclic Ligands. Organic Letters, 2017, 19, 6376-6379.	2.4	17
61	Synthesis of Spirotetrahydrofuran Oxindoles via Palladium-Catalyzed [4 + 1] Cycloaddition of Diphenyl 2-Oxoindolin-3-yl Phosphates and 2-Methylidenetrimethylene Carbonate. Organic Letters, 2021, 23, 6499-6503.	2.4	17
62	Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds. Scientific Reports, 2016, 6, 19931.	1.6	16
63	Development of Axially Chiral Cycloâ€Biaryldiol Ligands with Adjustable Dihedral Angles. Chemistry - A European Journal, 2016, 22, 17477-17484.	1.7	15
64	Highly Enantioselective Iridium-Catalyzed Cascade Double Allylation Strategy: Synthesis of Pyrrolidinoindolines with an All-Carbon Quaternary Stereocenter. Organic Letters, 2019, 21, 8501-8505.	2.4	14
65	Efficient ipso-nitration of arylboronic acids with iron nitrate as the nitro source. RSC Advances, 2013, 3, 25602.	1.7	13
66	Rhodiumâ€Catalyzed Hydrosilylation Reaction of <i>N</i> â€Sulfonylâ€1,2,3â€ŧriazoles with Triphenylsilane: Access to Diverse Compounds. European Journal of Organic Chemistry, 2015, 2015, 4471-4480.	1.2	13
67	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> â€Dithiophenols. Angewandte Chemie - International Edition, 2020, 59, 3671-3677.	7.2	13
68	Synthesis and ESR behaviors of nitroxide monoradical based on calix[4]arene. Tetrahedron Letters, 2006, 47, 7463-7465.	0.7	12
69	Axially Chiral Cyclic Diphosphine Ligand-Enabled Palladium-Catalyzed Intramolecular Asymmetric Hydroarylation. IScience, 2018, 10, 11-22.	1.9	12
70	Olefination of Alkyl Halides with Aldehydes by Merging Visible-Light Photoredox Catalysis and Organophosphorus Chemistry. IScience, 2018, 6, 102-113.	1.9	11
71	Easy conjugations between molecules via copper-catalyzed reactions of ortho-aromatic diamines with ketones. Green Chemistry, 2013, 15, 3184.	4.6	10
72	Chiral Phosphoric Acid Catalyzed Asymmetric Addition of 2-(Vinyloxy)ethanol to Imines and Applications of the Products. Organic Letters, 2019, 21, 5335-5340.	2.4	10

#	Article	IF	CITATIONS
73	Successive Free-Radical C(sp ²)–C(sp ²) Coupling Reactions to Form Graphene. CCS Chemistry, 2022, 4, 584-597.	4.6	10
74	Syntheses and spin–spin exchange interactions of calix[4]arene biradicals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 439-444.	2.0	9
75	Copperâ€Catalyzed Câ€Arylation and Denitrogenation of Tetrazoles: Domino Synthesis of 1,3â€Diaminoisoquinoline Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 1177-1184.	2.1	9
76	lridium-catalyzed intramolecular enantioselective allylation of quinazolin-4(3 <i>H</i>)-one derivatives. Organic and Biomolecular Chemistry, 2019, 17, 6461-6464.	1.5	9
77	Efficient Copper-Catalyzed Synthesis of 2-Amino-4(3H)-quinazolinone and 2-Aminoquinazoline Derivatives. Synthesis, 2009, 2009, 2679-2688.	1.2	8
78	Efficient copper-catalyzed domino synthesis of tetrazoloisoquinolines. RSC Advances, 2013, 3, 6278.	1.7	8
79	Copperâ€Catalyzed Câ^'H Activation of Substituted Pyridines Leading to Imidazopyridine Derivatives via Selfâ€Redox of the Substrates. Asian Journal of Organic Chemistry, 2017, 6, 1551-1555.	1.3	8
80	Boron-Catalyzed Arylthiooxygenation of N-Allylamides: Synthesis of (Arylsulfanyl)oxazolines. Synlett, 2015, 26, 676-680.	1.0	7
81	Chemistry in Calixarenes and Radicals: Inclusion, Spin Label, Reaction, and ESR Studies. Chemistry Letters, 2010, 39, 796-802.	0.7	6
82	Efficient Copper-Catalyzed Sonogashira Couplings of Aryl Halides with Terminal Alkynes in Water. Synlett, 2011, 2011, 702-706.	1.0	6
83	Similar Metabolic Changes Induced by HIPVs Exposure as Herbivore in Ammopiptanthus mongolicus. PLoS ONE, 2014, 9, e95474.	1.1	6
84	Rhodiumâ€Catalyzed Desulfination of Sodium Arenesulfinates and Oxidative Annulation with Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 489-499.	2.1	6
85	Shape evolution of parallelogrammic magnesium oxalate controlled by phosphate species. RSC Advances, 2015, 5, 63034-63043.	1.7	6
86	Catalyst Coated Paper Substrate Strategy: Development and Its Application for Copper-Catalysts Screening and Activity Studies. ChemistrySelect, 2016, 1, 3297-3305.	0.7	6
87	Synthesis of Chiral Propargylamines, Chiral 1,2â€Dihydronaphtho[2,1â€b]furans and Naphtho[2,1â€b]furans with Câ€Alkynyl N,N′â€diâ€{tertâ€butoxycarbonyl)â€aminals and βâ€Naphthols. Chemistry - A European Jou 27, 12884-12889.	na l,2 021,	6
88	Copperâ€Catalyzed Domino Synthesis of Benzo[4,5]imidazo[1,2â€ <i>a</i>]pyrimidinâ€4(10 <i>H</i>)â€ones us Cyanamide as a Building Block. Advanced Synthesis and Catalysis, 2015, 357, 3961-3968.	sing 2.1	5
89	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> â€Dithiophenols. Angewandte Chemie, 2020, 132, 3700-3706.	1.6	5
90	Metabolites of Ammopiptanthus mongolicus induced by Orgyia ericae attack andÂmechanical wounding. Plant Physiology and Biochemistry, 2013, 69, 101-107.	2.8	4

#	Article	IF	CITATIONS
91	Copper-Catalyzed Cascade Synthesis of [1,2,4]-Triazoloquinazolinones. Synlett, 2018, 29, 1395-1399.	1.0	4
92	Superbase-promoted selective carbon–carbon bond cleavage driven by aromatization. Organic and Biomolecular Chemistry, 2019, 17, 4984-4989.	1.5	2
93	Palladium-catalyzed [3 + 3] annulations of 1-alkyl-indolin-2-imines and dialkyl (2-methylenepropane-1,3-diyl) dicarbonates. Organic Chemistry Frontiers, 2022, 9, 3515-3520.	2.3	2
94	Easy and Efficient Copper-Catalyzed Synthesis of Bicyclic Pyrimidinones under Mild Conditions. Synlett, 2010, 2010, 2611-2616.	1.0	1