

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775747/publications.pdf Version: 2024-02-01

ΙιÅ™Ã_Ωςνναι σ

#	Article	IF	CITATIONS
1	Photoluminescence from OH-related radiative centres in silica, metal oxides and oxidized nanocrystalline and porous silicon. Journal of Luminescence, 1995, 63, 279-287.	3.1	57
2	Synthesis and optical properties of the Ge–Sb–S:PrCl3 glass system. Journal of Non-Crystalline Solids, 1999, 256-257, 266-270.	3.1	47
3	Electrochemical properties of corrosion products formed on Znâ€Mg, Znâ€Al and Znâ€Alâ€Mg coatings in model atmospheric conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 777-782.	1.5	43
4	Effect of divalent cations on properties of Er3+-doped silicate glasses. Optical Materials, 2004, 27, 331-336.	3.6	39
5	Optical properties of low-phonon-energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses. Journal of Physics and Chemistry of Solids, 2000, 61, 1583-1589.	4.0	32
6	Effect of hydrogen passivation on polycrystalline silicon thin films. Thin Solid Films, 2005, 487, 152-156.	1.8	30
7	Synthesis and physical properties of the system (GeS2)80â^'x(Ga2S3)20:xPr glasses. Optical Materials, 1996, 6, 217-223.	3.6	29
8	Intense near-infrared and midinfrared luminescence from the Dy3+-doped GeSe2–Ga2Se3–MI (M=K, Cs,) Tj	ETQ <u>q</u> 0 0 () rgBT /Overlo
9	Type l–type II band alignment of a GaAsSb/InAs/GaAs quantum dot heterostructure influenced by dot size and strain-reducing layer composition. Journal Physics D: Applied Physics, 2013, 46, 095103.	2.8	26
10	Properties of MOVPE InAs/GaAs quantum dots overgrown by InGaAs. Journal of Crystal Growth, 2007, 298, 582-585.	1.5	25
11	Photoelectric properties of selfâ€supporting porous silicon. Applied Physics Letters, 1994, 64, 3118-3120.	3.3	23
12	Planar waveguide lasers and structures created by laser ablation — an overview. European Physical Journal D, 1998, 48, 577-597.	0.4	23
13	Photoconductivity study of self-supporting porous silicon. Thin Solid Films, 1995, 255, 269-271.	1.8	22
14	Surface processes during growth of InAs/GaAs quantum dot structures monitored by reflectance anisotropy spectroscopy. Surface Science, 2010, 604, 318-321.	1.9	22
15	Gettering properties of PrO2 in In0.53Ga0.47As LPE growth. Journal of Crystal Growth, 1991, 110, 862-866.	1.5	21
16	Urbach edges in light-emitting porous silicon and related materials. Thin Solid Films, 1995, 255, 234-237.	1.8	21
17	Charge transport in porous silicon: considerations for achievement of efficient electroluminescence. Thin Solid Films, 1996, 276, 187-190.	1.8	21

18	Impurity breakdown and electric-field-dependent luminescence in MBE and VPE GaAs layers. Semiconductor Science and Technology, 1992, 7, 203-209.	2.0	20
----	---	-----	----

#	Article	IF	CITATIONS
19	Transport properties of self-supporting porous silicon. Journal of Non-Crystalline Solids, 1993, 164-166, 961-964.	3.1	20
20	Photovoltage spectroscopy of InAs/GaAs quantum dot structures. Journal of Applied Physics, 2002, 91, 10103.	2.5	20
21	Graded GaAsSb strain reducing layers covering InAs/GaAs quantum dots. Journal of Crystal Growth, 2013, 370, 303-306.	1.5	19
22	Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (REÂ=ÂHo, Er, Tm) after silver ion exchange. Journal of Non-Crystalline Solids, 2021, 557, 120580.	3.1	19
23	Optical characterisation of MOVPE grown vertically correlated InAs/GaAs quantum dots. Microelectronics Journal, 2008, 39, 1070-1074.	2.0	18
24	Erbium ion implantation into diamond – measurement and modelling of the crystal structure. Physical Chemistry Chemical Physics, 2017, 19, 6233-6245.	2.8	18
25	Formation of luminescent silicon by laser annealing ofaâ€Si:H. Applied Physics Letters, 1994, 64, 2555-2556.	3.3	17
26	InGaAs and GaAsSb strain reducing layers covering InAs/GaAs quantum dots. Journal of Crystal Growth, 2010, 312, 1383-1387.	1.5	17
27	Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S:Er3+ amorphous chalcogenides. Journal of Luminescence, 2014, 147, 209-215.	3.1	17
28	Synthesis and properties of Ge-Sb-S: NdCl3 glasses. Semiconductors, 1998, 32, 812-816.	0.5	16
29	GaSb based lasers operating near 2.3μm for high resolution absorption spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 3066-3069.	3.9	16
30	Growth and properties of InAs/InxGa1â^'xAs/GaAs quantum dot structures. Journal of Crystal Growth, 2008, 310, 2229-2233.	1.5	16
31	Growth of InAs/GaAs quantum dots covered by GaAsSb in multiple structures studied by reflectance anisotropy spectroscopy. Journal of Crystal Growth, 2015, 414, 156-160.	1.5	16
32	Near and mid-infrared luminescence of new chalcohalide glasses doped with Pr3+ ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 107-109.	3.5	15
33	The influence of silver ion exchange on the luminescence properties of Er-Yb silicate glasses. Optical Materials, 2017, 72, 183-189.	3.6	15
34	Photoluminescence and magnetophotoluminescence of vertically stacked InAs/GaAs quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 36, 106-113.	2.7	14
35	Growth of active Nd-doped YAP thin-film waveguides by laser ablation. Applied Physics A: Materials Science and Processing, 1998, 66, 583-586.	2.3	13
36	Optical properties of laser-prepared Er- and Er,Yb-doped LiNbO3 waveguiding layers. Laser Physics, 2013, 23, 105819.	1.2	13

#	Article	IF	CITATIONS
37	Synthesis and properties of GeS2–Ga2S3:NdCl3 and GeS2–Ga2S3:Nd2O3 glasses. Journal of Non-Crystalline Solids, 1997, 213-214, 58-62.	3.1	12
38	Study of InAs quantum dots in GaAs prepared on misoriented substrates. Thin Solid Films, 1998, 336, 80-83.	1.8	12
39	Room-temperature diode laser photoacoustic spectroscopy near 2.3Âμm. Applied Physics B: Lasers and Optics, 2005, 81, 857-861.	2.2	12
40	Substrate temperature changes during molecular beam epitaxy growth of GaMnAs. Journal of Applied Physics, 2007, 102, .	2.5	12
41	Influence of capping layer thickness on electronic states in self assembled MOVPE grown InAs quantum dots in GaAs. Superlattices and Microstructures, 2009, 46, 324-327.	3.1	12
42	Influence of strain reducing layers on electroluminescence and photoluminescence of InAs/GaAs QD structures. Journal of Crystal Growth, 2011, 315, 110-113.	1.5	12
43	Infrared luminescence in Er3+:Yb3Al5O12 bulk ceramics prepared by sol–gel method. Journal of the European Ceramic Society, 2014, 34, 3779-3782.	5.7	12
44	GaAsSb/InAs/(In)GaAs type II quantum dots for solar cell applications. Journal of Crystal Growth, 2017, 464, 64-68.	1.5	12
45	Er implantation into various cuts of ZnO – experimental study and DFT modelling. Journal of Alloys and Compounds, 2020, 816, 152455.	5.5	12
46	Erbium ion implantation into different crystallographic cuts of lithium niobate. Optical Materials, 2012, 34, 652-659.	3.6	11
47	Waveguiding Er 3+ /Yb 3+ :LiNbO 3 films prepared by a sol–gel method using polyvinylpyrrolidone. Journal of Luminescence, 2016, 176, 260-265.	3.1	11
48	The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 350-354.	1.4	11
49	The luminescence behaviour of porous silicon layers. Solid State Communications, 1993, 85, 347-350.	1.9	10
50	Low temperature photoluminescence of Ga0.84In0.16As0.22Sb0.78 solid solutions lattice matched to InAs. Journal of Applied Physics, 2001, 90, 2813-2817.	2.5	10
51	Elongation of InAsâ^•GaAs quantum dots from magnetophotoluminescence measurements. Applied Physics Letters, 2006, 89, 153108.	3.3	10
52	Effect of the lower and upper interfaces on the quality of InAs/GaAs quantum dots. Applied Surface Science, 2014, 301, 173-177.	6.1	10
53	Solution-processed Er3+-doped As3S7 chalcogenide films: optical properties and 1.5 μm photoluminescence activated by thermal treatment. Journal of Materials Chemistry C, 2017, 5, 8489-8497.	5.5	10
54	Infrared reflectivity of MTPA (TCNQ)2 single crystals. Solid State Communications, 1979, 32, 1315-1318.	1.9	9

#	Article	IF	CITATIONS
55	MBE growth of InAs/InAsSb/AlAsSb structures for mid-infrared lasers. Journal of Crystal Growth, 2001, 223, 341-348.	1.5	9
56	Polarization anisotropy of photoluminescence from multilayer InAs/GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 229-232.	2.7	9
57	Photoluminescence and magnetophotoluminescence of circular and elliptical InAs/GaAs quantum dots. Materials Science and Engineering C, 2006, 26, 983-986.	7.3	9
58	Lateral shape of InAs/GaAs quantum dots in vertically correlated structures. Journal of Crystal Growth, 2007, 298, 570-573.	1.5	9
59	Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb3Al5O12. Journal of Sol-Gel Science and Technology, 2014, 70, 142-148.	2.4	9
60	MOVPE prepared InAs/GaAs quantum dots covered by GaAsSb layer with long wavelength emission at 1.8µm. Journal of Crystal Growth, 2015, 414, 167-171.	1.5	9
61	Damage accumulation and implanted Gd and Au position in a- and c-plane GaN. Thin Solid Films, 2019, 680, 102-113.	1.8	9
62	Near-infrared photoluminescence properties of Er/Yb- and Ho/Yb-doped multicomponent silicate glass – The role of GeO2, Al2O3 and ZnO. Journal of Non-Crystalline Solids, 2022, 582, 121457.	3.1	9
63	Luminescence of Pr, Nd and Yb ions implanted in GaAs and GaP. European Physical Journal D, 1988, 38, 1288-1293.	0.4	8
64	Characterisation of InP and GalnAsP layers prepared by liquid-phase epitaxy using holmium doping and gettering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 160-163.	3.5	8
65	Direct experimental observation of the Hall angle in the low-temperature breakdown regime ofnâ^'GaAs. Physical Review B, 1998, 58, 13099-13102.	3.2	8
66	Electroluminescence and photoelectric properties of type II broken-gap n-In(Ga)As(Sb)/N-GaSb heterostructures. Journal of Applied Physics, 1999, 86, 6264-6268.	2.5	8
67	Magneto-photoluminescence study of energy levels of self-organised InAs/GaAs quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 318-323.	3.5	8
68	1.3 Âμm emission from InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3811-3814.	0.8	8
69	Self-Assembled InAs/GaAs Quantum Dots Covered by Different Strain Reducing Layers Exhibiting Strong Photo- and Electroluminescence in 1.3 and 1.55 <i>μ</i> m Bands. Journal of Nanoscience and Nanotechnology, 2011, 11, 6804-6809.	0.9	8
70	Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier. Journal of Applied Physics, 2013, 114, 174305.	2.5	8
71	Influence of gallium on infrared luminescence in Er3+ doped Yb3Al5â^'yGayO12 films grown by the liquid phase epitaxy. Journal of Luminescence, 2015, 164, 90-93.	3.1	8
72	Optical waveguides in Er:LiNbO3 fabricated by different techniques – A comparison. Optical Materials, 2016, 53, 160-168.	3.6	8

#	Article	IF	CITATIONS
73	InAs/GaAs quantum dot structures covered by InGaAs strain reducing layer characterized by photomodulated reflectance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 175-178.	3.5	7
74	Influence of capping layer on the properties of MOVPE-grown InAs/GaAs quantum dots. Journal of Crystal Growth, 2008, 310, 5081-5084.	1.5	7
75	Spectroscopic properties of Ni2+ and rare-earth codoped Ge–Ga–Sb–S glass. Journal of Physics and Chemistry of Solids, 2010, 71, 30-34.	4.0	7
76	The structural changes and optical properties of LiNbO3 after Er implantation using high ion fluencies. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 74-79.	1.4	7
77	Physico-chemical and optical properties of Er ³⁺ -doped and Er ³⁺ /Yb ³⁺ -co-doped Ge ₂₅ Ga _{9.5} Sb _{0.5} S ₆₅ chalcogenide glass. Pure and Applied Chemistry. 2017, 89, 429-436.	1.9	7
78	Coâ€implantation of Er and Yb ions into singleâ€crystalline and nanoâ€crystalline diamond. Surface and Interface Analysis, 2018, 50, 1218-1223.	1.8	7
79	Preparation of periodic structures by meander type liquid phase epitaxy. Journal of Crystal Growth, 1995, 146, 287-292.	1.5	6
80	Dependence of PS photoluminescence on relative humidity. Thin Solid Films, 1996, 276, 268-271.	1.8	6
81	InAs/GaAs multiple quantum dot structures grown by LP-MOVPE. Thin Solid Films, 2000, 380, 101-104.	1.8	6
82	InAs/GaAs lasers with very thin active layer. Thin Solid Films, 2000, 380, 233-236.	1.8	6
83	Photoluminescence of Ga0.94In0.06As0.13Sb0.87 solid solution lattice matched to InAs. Optical Materials, 2002, 19, 455-459.	3.6	6
84	CIRCUIT TYPE SIMULATIONS OF MAGNETO-TRANSPORT IN THE QUANTUM HALL EFFECT REGIME. International Journal of Modern Physics B, 2007, 21, 1424-1428.	2.0	6
85	Er+ medium energy ion implantation into lithium niobate. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1332-1335.	1.4	6
86	Optical properties of PMMA doped with erbium(III) and ytterbium(III) complexes. Polymer Engineering and Science, 2009, 49, 1814-1817.	3.1	6
87	Structure and optical properties of chalcohalide glasses doped with Pr3+ and Yb3+ ions. Journal of Non-Crystalline Solids, 2009, 355, 1865-1868.	3.1	6
88	Sol–gel-derived planar waveguides of Er3+:Yb3Al5O12 prepared by a polyvinylpyrrolidone-based method. Journal of Sol-Gel Science and Technology, 2016, 80, 531-537.	2.4	6
89	InGaN/GaN Structures: Effect of the Quantum Well Number on the Cathodoluminescent Properties. Physica Status Solidi (B): Basic Research, 2018, 255, 1700464.	1.5	6
90	Lateral Distribution of Si-Related Defects and Carrier Density in GaAs Crystals. Physica Status Solidi A, 1989, 111, 345-360.	1.7	5

#	Article	IF	CITATIONS
91	Impurity avalanche breakdown in n-type InP layers. Semiconductor Science and Technology, 1993, 8, 112-115.	2.0	5
92	Temperature behaviour of luminescence of free-standing porous silicon. Solid State Communications, 1994, 89, 297-300.	1.9	5
93	InAs δ-layer structures in GaAs grown by MOVPE and characterised by luminescence and photocurrent spectroscopy. Journal of Crystal Growth, 2003, 248, 328-332.	1.5	5
94	Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses. Journal of Materials Science: Materials in Electronics, 2009, 20, 510-513.	2.2	5
95	Thin films of ErNbO4 and YbNbO4 prepared by sol–gel. Journal of Sol-Gel Science and Technology, 2016, 78, 600-605.	2.4	5
96	Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications. Journal of Crystal Growth, 2017, 464, 59-63.	1.5	5
97	Erbium Luminescence Centres in Single- and Nano-Crystalline Diamond—Effects of Ion Implantation Fluence and Thermal Annealing. Micromachines, 2018, 9, 316.	2.9	5
98	Study of luminescence kinetics of AlN:Mn4+ under volume. Photo-excitation and surface excitation in plasma discharge. Physica Status Solidi A, 1980, 62, 341-349.	1.7	4
99	Origin of recombination transitions at the latticeâ€matched GalnAsSbâ€GaSbnâ€Ntypeâ€II heterojunctions. Journal of Applied Physics, 1994, 75, 4189-4193.	2.5	4
100	Study of single and double Si δ-doped GaAs layers by spectral photoconductivity measurements. Thin Solid Films, 1999, 342, 262-265.	1.8	4
101	Ag+ planar waveguides in novel Er–Yb silicate glasses. Journal of Physics and Chemistry of Solids, 2007, 68, 1263-1267.	4.0	4
102	Ultrafast photoluminescence spectroscopy of InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 853-856.	0.8	4
103	1.2µm and 1.5µm near-infrared photoluminescence and visible upconversion photoluminescence in GeGaS:Er3+/Ho3+ glasses under 980Ânm excitation. Journal of Materials Science: Materials in Electronics, 2018, 29, 17314-17322.	2.2	4
104	1.5 μm photoluminescence and upconversion photoluminescence in GeGaAsS:Er chalcogenide glass. Pure and Applied Chemistry, 2019, 91, 1757-1767.	1.9	4
105	Heavy doping with Sn of GaAs layers grown by molecular beam epitaxy for non-alloyed ohmic contacts. European Physical Journal D, 1988, 38, 224-230.	0.4	3
106	Switching of Impurity Breakdown in nâ€ŧype GaAs by FIR or Near Edge Illumination. Physica Status Solidi (B): Basic Research, 1991, 167, K43.	1.5	3
107	Light-emitting Si prepared by laser annealing of a-Si:H. Thin Solid Films, 1995, 255, 302-304.	1.8	3
108	Photoconductivity of porous silicon in contact with a liquid electrolyte. Thin Solid Films, 1997, 297, 64-67.	1.8	3

#	Article	IF	CITATIONS
109	Magneto-photoluminescence study of electronic transitions in InAs/GaAs quantum dot layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 247-251.	3.5	3
110	Lasers with δ InAs layers in GaAs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 312-316.	3.5	3
111	Properties of Er – doped layers grown from Er: YAG (YAP) crystalline targets by sub-picosecond laser deposition. Laser Physics Letters, 2004, 1, 248-252.	1.4	3
112	Erbium doping into silicate glasses to form luminescent optical layers for photonics applications. Journal of Physics and Chemistry of Solids, 2007, 68, 891-895.	4.0	3
113	InAs/GaAs quantum dot structures emitting in the 1.55 μm band. IOP Conference Series: Materials Science and Engineering, 2009, 6, 012007.	0.6	3
114	Highly oriented crystalline Er:YAG and Er:YAP layers prepared by PLD and annealing. Applied Surface Science, 2009, 255, 5292-5294.	6.1	3
115	Preparation and physical properties of luminescent 80GeSe2·(20â^'x)Sb2Se3·xSb2Tey:Pr2Se3 glasses; x=0, 1, 3, 10; y=2, 3, 4. Journal of Luminescence, 2013, 134, 558-565.	3.1	3
116	Erbium-ion implantation into various crystallographic cuts of Al2O3. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 89-93.	1.4	3
117	Growth and properties of the MOVPE GaAs/InAs/GaAsSb quantum dot structures. Physica B: Condensed Matter, 2016, 480, 14-22.	2.7	3
118	Ageing of PVP/LiNbO3 solutions and its impact on the optical properties of Er3+/Yb3+:LiNbO3 waveguiding films. Journal of Physics and Chemistry of Solids, 2017, 111, 343-348.	4.0	3
119	Water-soluble polymers as chelating agents for the deposition of Er3+/Yb3+:LiNbO3 waveguiding films. Journal of Sol-Gel Science and Technology, 2018, 86, 274-284.	2.4	3
120	Strong suppression of In desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface. Journal of Crystal Growth, 2019, 507, 310-315.	1.5	3
121	Impurity incorporation and structural defects in hydride VPE InP films. Journal of Crystal Growth, 1986, 79, 386-393.	1.5	2
122	Spatial Distribution of Point Defects and Complexes in Semi-Insulating LEC and Si-Doped GF Grown GaAs Crystals. Materials Science Forum, 1986, 10-12, 1235-1240.	0.3	2
123	The photoluminescence spectra of thin Si-doped GaAs layers grown by MBE. Physica Status Solidi A, 1990, 118, 567-576.	1.7	2
124	Inhomogeneities in n-Type and Semi-Insulating InP Crystals Studied by Photoluminescence Topography and Raman Scattering. Physica Status Solidi A, 1991, 126, 493-500.	1.7	2
125	On the stability of single δ-layer in GaAs. Solid State Communications, 1994, 89, 925-928.	1.9	2
126	The influence of preparation conditions on the photoluminescence spectra of light-emitting Si prepared by laser pulse irradiation of a-Si:H. Thin Solid Films, 1996, 276, 306-309.	1.8	2

#	Article	IF	CITATIONS
127	Gate Controlled Separation of Edge and Bulk Current Transport in the Quantum Hall Effect Regime. Journal of Low Temperature Physics, 2010, 159, 180-183.	1.4	2
128	Properties of epoxy novolak resin layers doped with bismuth for photoluminescence near 1300 nm. Journal of Applied Polymer Science, 2010, 117, 1608-1612.	2.6	2
129	InAs/GaAs quantum dot capping in kinetically limited MOVPE growth regime. Journal of Crystal Growth, 2011, 317, 39-42.	1.5	2
130	Electric field-assisted erbium doping of LiNbO3 from melt. Scripta Materialia, 2013, 68, 739-742.	5.2	2
131	Erbium diffusion from erbium metal or erbium oxide layers deposited on the surface of various LiNbO3 cuts. Optical Materials, 2013, 36, 402-407.	3.6	2
132	Two-band superlinear electroluminescence in GaSb based nanoheterostructures with AlSb/InAs1â^'x Sbx/AlSb deep quantum well. Journal of Applied Physics, 2014, 115, 223102.	2.5	2
133	The electric field dependence of photoconductivity spectra in AlGaAs/GaAs DH laser diodes in relation with laser parameters. Physica Status Solidi A, 1986, 97, 657-665.	1.7	1
134	Si related defects in GaAs. Infrared Physics, 1989, 29, 725-727.	0.5	1
135	Novel exciton-like optical transitions in AlGaAs/GaAs single heterojunctions. Journal of Luminescence, 1997, 72-74, 898-900.	3.1	1
136	Electroluminescence of type II broken-gap p-Ga0.84In0.16As0.22Sb0.78â^•p-InAs heterostructures with a high-mobility electron channel at the interface. Journal of Applied Physics, 2005, 98, 083512.	2.5	1
137	Localised doping of Li-silicate glasses by Er3+ ion exchange to fabricate thin optical layers. Optical Materials, 2007, 29, 753-759.	3.6	1
138	Optical properties of Dy3+doped epoxy novolak resin. , 2008, , .		1
139	Optical properties of PMMA polymer doped with Er3+and Er3+/Yb3+ions. Journal of Physics: Conference Series, 2008, 100, 012021.	0.4	1
140	Chromium(IV) ions containing novel silicate glasses. Optical Materials, 2009, 32, 85-88.	3.6	1
141	Photoluminescence in pulsed-laser deposited GeGaSbS:Er films. Optical Materials, 2018, 85, 246-253.	3.6	1
142	Surface and volume excitation, energy transfer and recombination processes in AIN:Mn. Journal of Luminescence, 1979, 18-19, 805-808.	3.1	0
143	The influence of reabsorption on fluorescence spectra of NdxLa1â^'x P5O14. European Physical Journal D, 1982, 32, 101-107.	0.4	0
144	Electro-optical properties of InGaAs layers grown by hydride vapour phase epitaxy. Crystal Research and Technology, 1990, 25, 25-30.	1.3	0

#	Article	IF	CITATIONS
145	Spectroscopic study of Si-related defects in nonhomogeneous GaAs: Si. Materials Letters, 1993, 17, 237-240.	2.6	0
146	On relation between detection parameters of SI GaAs particle detectors and physical properties of starting materials. , 0, , .		0
147	GaInAs/GaAs strained QWs prepared by LP MOVPE on misoriented substrates. , 0, , .		Ο
148	Strained In x Ga1â´'x As/GaAs multiple quantum wells grown by MOVPE. European Physical Journal D, 1999, 49, 805-811.	0.4	0
149	Deposition of Ti:sapphire film on quartz and sapphire substrates by laser. , 0, , .		0
150	Quantum size InAs/GaAs lasers-preparation and properties. , 0, , .		0
151	Mid-infrared semiconductor lasers. , 0, , .		0
152	<title>Nd-doped KGW crystalline waveguides fabricated by pulsed laser deposition</title> ., 2002, , .		0
153	Influence of pulse duration and annealing on crystallinity and luminescence of laser-deposited Er-doped YAG (YAP) layers. , 2002, , .		Ο
154	Dynamical behaviour of thel̃′-doped Au/GaAs Schottky barrier. Physica Status Solidi A, 2003, 195, 61-66.	1.7	0
155	Erbium Medium Temperature Localised Doping into Lithium Niobate and Sapphire: A Comparative Study. Solid State Phenomena, 2003, 90-91, 559-564.	0.3	Ο
156	Erbium localized doping into various cuts of lithium niobate and sapphire: a comparative study. , 2003, , ,		0
157	<title>Rare earth doped gallium nitride layers for photonics applications</title> . , 2006, 6180, 260.		0
158	Optical properties of Er3++ Yb3+doped gallium nitride layers. , 2006, , .		0
159	Porous glass doping by Er3+ for photonics applications. Journal of Materials Science: Materials in Electronics, 2007, 18, 379-382.	2.2	0
160	Investigation of GaN layers doped with Er3+ and Er3+ + Yb3+ ions using the transmittance measurement. , 2008, , .		0
161	Bismuth(III) doped polymer layers for telecommunication applications. , 2009, , .		Ο
162	Dysprosium (III)-doped novel silicate glasses. Optical Materials, 2009, 32, 79-84.	3.6	0

#	Article	IF	CITATIONS
163	Quantum confinement in MOVPE-grown structures with self-assembled InAs/GaAs quantum dots. Journal of Physics: Conference Series, 2010, 245, 012079.	0.4	0
164	Electro- and photoluminescence of InAs/GaAs quantum dot structures. Journal of Physics: Conference Series, 2010, 245, 012080.	0.4	0
165	A Numerical Study Of Magneto Transport In 2D Electronic Systems In The Presence Of Non-Uniform Magnetic Fields. , 2011, , .		Ο
166	Optical properties of biâ€doped epoxy novolak resin containing Ce, Dy, and Y ions. Journal of Applied Polymer Science, 2012, 125, 710-715.	2.6	0
167	Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs. Thin Solid Films, 2013, 543, 83-87.	1.8	0
168	Photoluminescence of InGaN/GaN MQW structures $\hat{a} \in \mathbb{C}$ technological aspects. , 2016, , .		0
169	GaAsSb/InAs QDs structures for advanced telecom lasers. , 2016, , .		Ο
170	GaAsSb-capped InAs QD type-II solar cell structures — improvement by composition profiling of layers surrounding QD. Materials Research Express, 2017, 4, 025502.	1.6	0
171	Modification of Er:YbAG film microstructure with a sintering agent. IOP Conference Series: Materials Science and Engineering, 2017, 266, 012004.	0.6	0
172	Polyethylene glycol (PEG) used in the preparation of (Er3+/Yb3+):LiNbO3waveguides. IOP Conference Series: Materials Science and Engineering, 2017, 266, 012011.	0.6	0
173	Meander Type LPE and High Temperature Stability of Elastically Strained GalnAsp/InP Layers. , 1996, , 61-64.		0