Chi Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775733/publications.pdf

Version: 2024-02-01

		117571	1	149623	
69	3,374	34		56	
papers	citations	h-index		g-index	
80	80	80		3232	
00	00	00		3232	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 2011, 159, 802-808.	3.7	440
2	Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecological Modelling, 2014, 291, 6-14.	1.2	216
3	Risk assessment of Cd polluted paddy soils in the industrial andÂtownship areas in Hunan, Southern China. Chemosphere, 2016, 144, 346-351.	4.2	118
4	Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 2016, 210, 174-181.	3.7	117
5	Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Science of the Total Environment, 2019, 650, 594-603.	3.9	102
6	Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environmental Pollution, 2013, 178, 426-432.	3.7	99
7	Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Science of the Total Environment, 2022, 823, 153759.	3.9	99
8	A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China. Environmental Pollution, 2012, 161, 235-242.	3.7	95
9	Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China. Environmental Monitoring and Assessment, 2012, 184, 5889-5897.	1.3	86
10	Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicology and Environmental Safety, 2019, 180, 160-167.	2.9	80
11	Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Scientific Reports, 2016, 6, 37084.	1.6	79
12	Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures. Environmental Pollution, 2021, 282, 117038.	3.7	79
13	Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicology and Environmental Safety, 2019, 171, 425-434.	2.9	74
14	Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content. Environmental Pollution, 2016, 219, 1036-1043.	3.7	69
15	Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils. Journal of Hazardous Materials, 2019, 371, 634-642.	6.5	62
16	Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil. Chemosphere, 2019, 220, 237-248.	4.2	61
17	Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environmental Science and Pollution Research, 2011, 18, 958-967.	2.7	59
18	Vegetative cover and PAHs accumulation in soils of urban green space. Environmental Pollution, 2012, 161, 36-42.	3.7	59

#	Article	IF	CITATIONS
19	Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation. Environmental Pollution, 2013, 178, 294-299.	3.7	54
20	Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 189, 109973.	2.9	54
21	Cost-Benefit Analysis of Green Infrastructures on Community Stormwater Reduction and Utilization: A Case of Beijing, China. Environmental Management, 2016, 58, 1015-1026.	1.2	53
22	Effects of urbanization on heavy metal accumulation in surface soils, Beijing. Journal of Environmental Sciences, 2018, 64, 328-334.	3.2	53
23	Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction. Environmental Pollution, 2019, 254, 112930.	3.7	49
24	Influences of setting sizes and combination of green infrastructures on community's stormwater runoff reduction. Ecological Modelling, 2015, 318, 236-244.	1,2	46
25	Modelling cadmium contamination in paddy soils under long-term remediation measures: Model development and stochastic simulations. Environmental Pollution, 2016, 216, 146-155.	3.7	45
26	Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Ecotoxicology and Environmental Safety, 2018, 159, 38-45.	2.9	45
27	Dynamic response of enzymatic activity and microbial community structure in metal(loid)-contaminated soil with tree-herb intercropping. Geoderma, 2019, 345, 5-16.	2.3	45
28	Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor. Journal of Agricultural and Food Chemistry, 2017, 65, 5463-5469.	2.4	43
29	Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property. Environmental Pollution, 2018, 238, 263-269.	3.7	43
30	Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai. Environmental Science and Pollution Research, 2016, 23, 5222-5231.	2.7	42
31	Spatial Analysis of PAHs in Soils along an Urban–Suburban–Rural Gradient: scale effect, distribution patterns, diffusion and influencing factors. Scientific Reports, 2016, 6, 37185.	1.6	39
32	Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses. Environmental Monitoring and Assessment, 2016, 188, 162.	1.3	38
33	Health Risk Assessment of Trace Metals in Various Environmental Media, Crops and Human Hair from a Mining Affected Area. International Journal of Environmental Research and Public Health, 2017, 14, 1595.	1.2	37
34	Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. Science of the Total Environment, 2017, 584-585, 942-949.	3.9	35
35	Chelator-assisted phytoextraction of arsenic, cadmium and lead by <i>Pteris vittata</i> L. and soil microbial community structure response. International Journal of Phytoremediation, 2019, 21, 1032-1040.	1.7	34
36	Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. Ecotoxicology and Environmental Safety, 2019, 169, 306-315.	2.9	33

#	Article	IF	CITATIONS
37	Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 309-318.	2.4	31
38	Effects of mixed amendments on the phytoavailability of Cd in contaminated paddy soil under a rice-rape rotation system. Environmental Science and Pollution Research, 2019, 26, 14128-14136.	2.7	29
39	Physiological, anatomical, and transcriptional responses of mulberry (Morus alba L.) to Cd stress in contaminated soil. Environmental Pollution, 2021, 284, 117387.	3.7	27
40	Modelling mass balance of cadmium in paddy soils under long term control scenarios. Environmental Sciences: Processes and Impacts, 2018, 20, 1158-1166.	1.7	26
41	Factors influencing the effectiveness of liming on cadmium reduction in rice: A meta-analysis and decision tree analysis. Science of the Total Environment, 2021, 779, 146477.	3.9	26
42	Ecological risks of polycyclic musk in soils irrigated with reclaimed municipal wastewater. Ecotoxicology and Environmental Safety, 2013, 97, 242-247.	2.9	25
43	Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil. Chemosphere, 2021, 285, 131420.	4.2	24
44	Response to cadmium and phytostabilization potential of <i>Platycladus orientalis</i> in contaminated soil. International Journal of Phytoremediation, 2018, 20, 1337-1345.	1.7	23
45	Physiological responses of Morus alba L. in heavy metal(loid)–contaminated soil and its associated improvement of the microbial diversity. Environmental Science and Pollution Research, 2020, 27, 4294-4308.	2.7	23
46	Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China. Environmental Earth Sciences, 2018, 77, 1.	1.3	22
47	Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Environmental Science and Pollution Research, 2019, 26, 19434-19444.	2.7	22
48	Estimation of the accumulation rates and health risks of heavy metals in residential soils of three metropolitan cities in China. Journal of Environmental Sciences, 2022, 115, 149-161.	3.2	22
49	Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. Journal of Environmental Management, 2021, 296, 113174.	3.8	21
50	Mass balance-based regression modeling of Cd and Zn accumulation in urban soils of Beijing. Journal of Environmental Sciences, 2017, 53, 99-106.	3.2	19
51	Removal of cadmium, lead, and zinc from multi-metal–contaminated soil using chelate-assisted Sedum alfredii Hance. Environmental Science and Pollution Research, 2019, 26, 28319-28327.	2.7	19
52	Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development. Environmental Pollution, 2015, 197, 21-27.	3.7	18
53	Optimizing pyrolysis temperature of contaminated rice straw biochar: Heavy metal(loid) deportment, properties evolution, and Pb adsorption/immobilization. Journal of Saudi Chemical Society, 2022, 26, 101439.	2.4	18
54	Changes in chemical fractions and ecological risk prediction of heavy metals in estuarine sediments of Chunfeng Lake estuary, China. Marine Pollution Bulletin, 2019, 138, 575-583.	2.3	17

#	Article	IF	CITATIONS
55	A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotoxicology and Environmental Safety, 2020, 197, 110607.	2.9	16
56	Potential of Pyrolysis for the Recovery of Heavy Metals and Bioenergy from Contaminated Broussonetia papyrifera Biomass. BioResources, 2018, 13, .	0.5	15
57	Effect of Liming with Various Water Regimes on Both Immobilization of Cadmium and Improvement of Bacterial Communities in Contaminated Paddy: A Field Experiment. International Journal of Environmental Research and Public Health, 2019, 16, 498.	1.2	15
58	Characteristics and behaviour of vanadium(V) adsorption on goethite and birnessite. Environmental Earth Sciences, 2020, 79, 1.	1.3	15
59	A questionnaire based probabilistic risk assessment (PRA) of heavy metals in urban and suburban soils under different land uses and receptor populations. Science of the Total Environment, 2021, 793, 148525.	3.9	15
60	Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. Journal of Central South University, 2019, 26, 2987-2997.	1.2	13
61	Facilitation of Morus alba L. intercropped with Sedum alfredii H. and Arundo donax L. on soil contaminated with potentially toxic metals. Chemosphere, 2022, 290, 133107.	4.2	13
62	Distribution Characteristics and Risk Assessment of Heavy Metals in Soil and Street Dust with Different Land Uses, a Case in Changsha, China. International Journal of Environmental Research and Public Health, 2021, 18, 10733.	1.2	12
63	Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities. Environmental Earth Sciences, 2018, 77, 1.	1.3	11
64	Comparison of heavy metals in urban soil and dust in cities of China: characteristics and health risks. International Journal of Environmental Science and Technology, 2023, 20, 2247-2258.	1.8	10
65	Estimating accumulation rates and health risks of PAHs in residential soils of metropolitan cities. Journal of Environmental Management, 2022, 319, 115699.	3.8	8
66	A water balance approach to assess rainwater availability potential in urban areas: the case of Beijing, China. Water Science and Technology: Water Supply, 2015, 15, 490-498.	1.0	7
67	Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. Environmental Geochemistry and Health, 2022, 44, 2451-2463.	1.8	5
68	Adsorption of Cd on Soils with Various Particle Sizes from an Abandoned Non-ferrous Smelting Site: Characteristics and Mechanism. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 630-635.	1.3	5
69	Physiological responses, tolerance efficiency, and phytoextraction potential of Hylotelephium spectabile (Boreau) H. Ohba under Cd stress in hydroponic condition. International Journal of Phytoremediation, 2021, 23, 80-88.	1.7	4