
Bert W O'malley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-operative Monitoring for Head and Neck Microvascular Reconstruction in the Era of Resident Duty Hour Restrictions: A Retrospective Cohort Study Comparing 2 Monitoring Protocols. Annals of Otology, Rhinology and Laryngology, 2023, 132, 310-316.	0.6	1
2	Targeted gene expression profiling of inverted papilloma and squamous cell carcinoma. International Forum of Allergy and Rhinology, 2022, 12, 200-209.	1.5	8
3	Comparison of highâ€flow CSF leak closure with nasoseptal flap following endoscopic endonasal approach in adult and pediatric populations. International Forum of Allergy and Rhinology, 2022, 12, 321-323.	1.5	2
4	Defining the mammalian coactivation of hepatic 12-h clock and lipid metabolism. Cell Reports, 2022, 38, 110491.	2.9	13
5	A benchmark for oncologic outcomes and model for lethal recurrence risk after transoral robotic resection of HPV-related oropharyngeal cancers. Oral Oncology, 2022, 127, 105798.	0.8	8
6	Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 2021, 81, canres.1708.2020.	0.4	24
7	Surgical Treatment of Sinonasal Mucosal Melanoma in Patients Treated with Systemic Immunotherapy. Journal of Neurological Surgery, Part B: Skull Base, 2021, 82, e148-e154.	0.4	3
8	Retropharyngeal Internal Carotid Artery Management in TORS Using Microvascular Reconstruction. Laryngoscope, 2021, 131, E821-E827.	1.1	6
9	Revisiting the Recommendation for Contralateral Tonsillectomy in HPVâ€Associated Tonsillar Carcinoma. Otolaryngology - Head and Neck Surgery, 2021, 164, 1222-1229.	1.1	5
10	Increased rate of recurrence and high rate of salvage in patients with human papillomavirus–associated oropharyngeal squamous cell carcinoma with adverse features treated with primary surgery without recommended adjuvant therapy. Head and Neck, 2021, 43, 1128-1141.	0.9	17
11	<scp>Drivers</scp> of <scp>Inâ€Hospital</scp> Costs Following Endoscopic Transphenoidal Pituitary Surgery. Laryngoscope, 2021, 131, 760-764.	1.1	15
12	A Comparison of Overall Survival between Definitive Local Therapy and Systemic Therapy in Metastatic Sinonasal Malignancies. Journal of Neurological Surgery, Part B: Skull Base, 2021, 82, .	0.4	0
13	Steroid receptor coactivator 3 (SRC-3/AIB1) is enriched and functional in mouse and human Tregs. Scientific Reports, 2021, 11, 3441.	1.6	12
14	Emerging roles of steroid receptor coactivators in stromal cell responses. Journal of Endocrinology, 2021, 248, R41-R50.	1.2	5
15	Targeting NSD2-mediated SRC-3 liquid–liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nature Communications, 2021, 12, 1022.	5.8	37
16	Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations. Cancers, 2021, 13, 669.	1.7	57
17	Determinants of Patient Refusal of Postoperative Radiation Therapy in Sinonasal Squamous Cell Carcinoma. , 2021, 82, .		0
18	A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Communications Biology, 2021, 4, 399.	2.0	8

Bert W O'MALLEY

#	Article	IF	CITATIONS
19	Expedient Total Syntheses of Pladienolide-Derived Spliceosome Modulators. Journal of the American Chemical Society, 2021, 143, 4915-4920.	6.6	5
20	Mechanisms of enhancer action: the known and the unknown. Genome Biology, 2021, 22, 108.	3.8	146
21	Cell lineage tracing links ERα loss in Erbb2-positive breast cancers to the arising of a highly aggressive breast cancer subtype. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
22	A Steroid Receptor Coactivator Stimulator MCB-613 Attenuates Adverse Remodeling After Myocardial Infarction. Journal of the Endocrine Society, 2021, 5, A803-A803.	0.1	0
23	Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nature Communications, 2021, 12, 3285.	5.8	27
24	Survival and toxicity in patients with human papilloma virusâ€associated oropharyngeal squamous cell cancer receiving trimodality therapy including transoral robotic surgery. Head and Neck, 2021, 43, 3053-3061.	0.9	2
25	Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Essays in Biochemistry, 2021, 65, 857-866.	2.1	7
26	The microbiome of HPV-positive tonsil squamous cell carcinoma and neck metastasis. Oral Oncology, 2021, 117, 105305.	0.8	14
27	Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Molecular Therapy - Methods and Clinical Development, 2021, 21, 209-236.	1.8	20
28	Oncologic outcomes of transoral robotic surgery for <scp>HPV</scp> â€negative oropharyngeal carcinomas. Head and Neck, 2021, 43, 2923-2934.	0.9	5
29	Oncologic and survival outcomes for resectable locally-advanced HPV-related oropharyngeal cancer treated with transoral robotic surgery. Oral Oncology, 2021, 118, 105307.	0.8	21
30	Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. ELife, 2021, 10, .	2.8	15
31	Development of improved SRC-3 inhibitors as breast cancer therapeutic agents. Endocrine-Related Cancer, 2021, 28, 657-670.	1.6	7
32	The E3 ligase TRAF4 promotes IGF signaling by mediating atypical ubiquitination of IRS-1. Journal of Biological Chemistry, 2021, 296, 100739.	1.6	7
33	Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology, 2021, 162, .	1.4	4
34	Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Reports, 2021, 37, 110075.	2.9	8
35	A Phase 2 Trial of Alternative Volumes of Oropharyngeal Irradiation for De-intensification (AVOID): Omission of the Resected Primary Tumor Bed After Transoral Robotic Surgery for Human Papilloma Virus–Related Squamous Cell Carcinoma of the Oropharynx. International Journal of Radiation Oncology Biology Physics. 2020. 106. 725-732.	0.4	103
36	Predictors of Nodal Metastasis in Mucoepidermoid Carcinoma of the Oral Cavity and Oropharynx. Orl, 2020, 82, 327-334.	0.6	2

#	Article	IF	CITATIONS
37	Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Molecular Cell, 2020, 79, 812-823.e4.	4.5	94
38	A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31353-31364.	3.3	20
39	Oncologic Outcomes Following Transoral Robotic Surgery for Human Papillomavirus–Associated Oropharyngeal Carcinoma in Older Patients. JAMA Otolaryngology - Head and Neck Surgery, 2020, 146, 1167.	1.2	2
40	XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nature Communications, 2020, 11, 6215.	5.8	34
41	The REGÎ ³ inhibitor NIP30 increases sensitivity to chemotherapy in p53-deficient tumor cells. Nature Communications, 2020, 11, 3904.	5.8	10
42	Considerations in the evaluation and management of oral potentially malignant disorders during the <scp>COVID</scp> â€19 pandemic. Head and Neck, 2020, 42, 1497-1502.	0.9	18
43	SRC-2 Coactivator: a role in human metabolic evolution and disease. Molecular Medicine, 2020, 26, 45.	1.9	8
44	<scp>Penn</scp> Medicine Head and Neck Cancer Service Line <scp>COVID</scp> â€19 management guidelines. Head and Neck, 2020, 42, 1507-1515.	0.9	9
45	Incidence, risk factors, and outcomes of endoscopic sinus surgery after endoscopic skullâ€base surgery. International Forum of Allergy and Rhinology, 2020, 10, 521-525.	1.5	2
46	12-h clock regulation of genetic information flow by XBP1s. PLoS Biology, 2020, 18, e3000580.	2.6	46
47	Topical preparations to reduce SARSâ€CoV â€2 aerosolization in head and neck mucosal surgery. Head and Neck, 2020, 42, 1268-1272.	0.9	61
48	Steroid receptor coactivator-3 as a target for anaplastic thyroid cancer. Endocrine-Related Cancer, 2020, 27, 209-220.	1.6	11
49	90 YEARS OF PROGESTERONE: Reminiscing on the origins of the field of progesterone and estrogen receptor action. Journal of Molecular Endocrinology, 2020, 65, C1-C4.	1.1	5
50	The virome of HPV-positive tonsil squamous cell carcinoma and neck metastasis. Oncotarget, 2020, 11, 282-293.	0.8	6
51	A Phase I/II Clinical Trial of Proton Therapy for Chordomas and Chondrosarcomas. , 2020, 81, .		0
52	90 Years of progesterone: Ninety years of progesterone: the â€~other' ovarian hormone. Journal of Molecular Endocrinology, 2020, 65, E1-E4.	1.1	4
53	The impact of treatment package time on locoregional control for HPV+ oropharyngeal squamous cell carcinoma treated with surgery and postoperative (chemo)radiation. Head and Neck, 2019, 41, 3858-3868.	0.9	7
54	Drug-induced PD-L1 expression and cell stress response in breast cancer cells can be balanced by drug combination. Scientific Reports, 2019, 9, 15099.	1.6	40

Bert W O'MALLEY

#	Article	IF	CITATIONS
55	Genomic Function of Estrogen Receptor \hat{I}^2 in Endometriosis. Endocrinology, 2019, 160, 2495-2516.	1.4	35
56	Risk of post-operative, pre-radiotherapy contralateral neck recurrence in patients treated with surgery followed by adjuvant radiotherapy for human papilloma virus-associated tonsil cancer. British Journal of Radiology, 2019, 92, 20190466.	1.0	3
57	A Next-Generation Single-Port Robotic Surgical System for Transoral Robotic Surgery. JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 1027.	1.2	33
58	Asymptomatic radiographic sinonasal inflammation does not affect pituitary surgery outcomes. Laryngoscope, 2019, 129, 1545-1548.	1.1	7
59	Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nature Communications, 2019, 10, 1718.	5.8	45
60	A novel transpalatalâ€ŧransoral robotic surgery approach to clival chordomas extending into the nasopharynx. Head and Neck, 2019, 41, E133-E140.	0.9	14
61	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	3.3	103
62	SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Letters, 2019, 442, 310-319.	3.2	17
63	Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nature Metabolism, 2019, 1, 70-85.	5.1	110
64	Sinonasal Undifferentiated Carcinoma: A 15-Year Single Institution Experience. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, 088-095.	0.4	12
65	John Mendelsohn: A visionary scientist, oncologist and leader. Genes and Cancer, 2019, 10, 109-118.	0.6	3
66	Temporal Trends in the Use of Radiation Therapy for the Treatment of Pituitary Adenoma in the National Cancer Database. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, .	0.4	0
67	A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. Journal of Controlled Release, 2018, 279, 243-250.	4.8	43
68	USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nature Communications, 2018, 9, 1270.	5.8	63
69	Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature, 2018, 556, 249-254.	13.7	164
70	Bufalin suppresses endometriosis progression by inducing pyroptosis and apoptosis. Journal of Endocrinology, 2018, 237, 255-269.	1.2	26
71	Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2018, 21, 28-35.	1.3	30
72	Steroid Receptor Coactivator-2 Controls the Pentose Phosphate Pathway through RPIA in Human Endometrial Cancer Cells. Scientific Reports, 2018, 8, 13134.	1.6	6

#	Article	IF	CITATIONS
73	A novel mathematical method for disclosing oscillations in gene transcription: A comparative study. PLoS ONE, 2018, 13, e0198503.	1.1	23
74	SRC-3 Coactivator Governs Dynamic Estrogen-Induced Chromatin Looping Interactions during Transcription. Molecular Cell, 2018, 70, 679-694.e7.	4.5	31
75	Regulation of Pathogenic T Helper 17 Cell Differentiation by Steroid Receptor Coactivator-3. Cell Reports, 2018, 23, 2318-2329.	2.9	31
76	Retinoid Signaling Controlled by SRC-2 in Decidualization Revealed by Transcriptomics. Reproduction, 2018, 156, 387-395.	1.1	11
77	Unveiling "Musica Universalis―of the Cell: A Brief History of Biological 12-Hour Rhythms. Journal of the Endocrine Society, 2018, 2, 727-752.	0.1	38
78	Proteomic profiling identifies key coactivators utilized by mutant ERα proteins as potential new therapeutic targets. Oncogene, 2018, 37, 4581-4598.	2.6	51
79	TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. Journal of Clinical Investigation, 2018, 128, 3129-3143.	3.9	55
80	CARM1 methylates MED12 to regulate its RNA-binding ability. Life Science Alliance, 2018, 1, e201800117.	1.3	43
81	Surgery for Treatment of Primary Sinonasal Mucosal Melanoma in Patients Treated with Systemic Immunotherapy for Distant Disease. Journal of Neurological Surgery, Part B: Skull Base, 2018, 79, S1-S188.	0.4	0
82	Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Research, 2017, 77, 4293-4304.	0.4	36
83	A Cell-Autonomous Mammalian 12Âhr Clock Coordinates Metabolic and Stress Rhythms. Cell Metabolism, 2017, 25, 1305-1319.e9.	7.2	119
84	A Gingiva-Derived Mesenchymal Stem Cell-Laden Porcine Small Intestinal Submucosa Extracellular Matrix Construct Promotes Myomucosal Regeneration of the Tongue. Tissue Engineering - Part A, 2017, 23, 301-312.	1.6	25
85	Structural and Functional Impacts of ER Coactivator Sequential Recruitment. Molecular Cell, 2017, 67, 733-743.e4.	4.5	69
86	Growth regulation by estrogen in breast cancer 1 (GREB1) is a novel progesterone-responsive gene required for human endometrial stromal decidualization. Molecular Human Reproduction, 2017, 23, 646-653.	1.3	35
87	Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. Journal of Biological Chemistry, 2017, 292, 14456-14472.	1.6	165
88	Evaluation of highâ€fidelity simulation as a training tool in transoral robotic surgery. Laryngoscope, 2017, 127, 2790-2795.	1.1	13
89	Histone Marks in the â€~Driver's Seat': Functional Roles in Steering the Transcription Cycle. Trends in Biochemical Sciences, 2017, 42, 977-989.	3.7	132
90	Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Research, 2017, 45, 9348-9360.	6.5	39

#	Article	IF	CITATIONS
91	Microbial Signatures Associated with Oropharyngeal and Oral Squamous Cell Carcinomas. Scientific Reports, 2017, 7, 4036.	1.6	55
92	In Memoriam, P. Michael Conn, PhD (1949–2016). Endocrine Reviews, 2017, 38, 1-2.	8.9	8
93	In Memoriam, P. Michael Conn, PhD (1949–2016). Endocrinology, 2017, 158, 197-198.	1.4	0
94	In Memoriam, P. Michael Conn, PhD (1949–2016). Journal of the Endocrine Society, 2017, 1, 124-126.	0.1	0
95	Brain nuclear receptors and body weight regulation. Journal of Clinical Investigation, 2017, 127, 1172-1180.	3.9	20
96	Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk. Molecular Endocrinology, 2016, 30, 856-871.	3.7	68
97	Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4970-4975.	3.3	74
98	The Role of Steroid Receptor Coactivators in Hormone Dependent Cancers and Their Potential as Therapeutic Targets. Hormones and Cancer, 2016, 7, 229-235.	4.9	30
99	Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology. Journal of Biological Rhythms, 2016, 31, 443-460.	1.4	20
100	Risk of lymph node metastasis and recommendations for elective nodal treatment in squamous cell carcinoma of the nasal cavity and maxillary sinus: a SEER analysis. Acta Oncológica, 2016, 55, 1107-1114.	0.8	33
101	Origins of the Field of Molecular Endocrinology: A Personal Perspective. Molecular Endocrinology, 2016, 30, 1015-1018.	3.7	7
102	Molecular Pathways: Targeting Steroid Receptor Coactivators in Cancer. Clinical Cancer Research, 2016, 22, 5403-5407.	3.2	31
103	HPVâ€related oropharyngeal cancer: Risk factors for treatment failure in patients managed with primary transoral robotic surgery. Head and Neck, 2016, 38, 59-65.	0.9	56
104	Propensity score analysis of endoscopic and open approaches to malignant paranasal and anterior skull base tumor outcomes. Laryngoscope, 2016, 126, 1724-1729.	1.1	35
105	Feasibility and relevance of level I substation node counts in oropharyngeal carcinoma. Head and Neck, 2016, 38, 1194-1200.	0.9	9
106	Endoscopy versus imaging: Analysis of surveillance methods in sinonasal malignancy. Head and Neck, 2016, 38, 1229-1233.	0.9	20
107	The Dual Estrogen ReceptorαInhibitory Effects of the Tissue-Selective Estrogen Complex for Endometrial and Breast Safety. Molecular Pharmacology, 2016, 89, 14-26.	1.0	26
108	Post-treatment weight change in oral cavity and oropharyngeal squamous cell carcinoma. Supportive Care in Cancer, 2016, 24, 2333-2340.	1.0	7

#	Article	IF	CITATIONS
109	HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Research, 2016, 76, 1463-1475.	0.4	35
110	The REGÎ ³ -proteasome forms a regulatory circuit with lκBÉ› and NFκB in experimental colitis. Nature Communications, 2016, 7, 10761.	5.8	52
111	Nodal metastasis and elective nodal level treatment in sinonasal small-cell and sinonasal undifferentiated carcinoma: a surveillance, epidemiology and end results analysis. British Journal of Radiology, 2016, 89, 20150488.	1.0	23
112	Upregulation of GSK3β Contributes to Brain Disorders in Elderly REGγ-knockout Mice. Neuropsychopharmacology, 2016, 41, 1340-1349.	2.8	10
113	Abstract 129: Transient Activation of AMPK Prior to Cardiac Pressure Overload Alleviates Fibrotic Accumulation and Functional Decline. Circulation Research, 2016, 119, .	2.0	0
114	Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy. Photochemistry and Photobiology, 2015, 91, 1210-1218.	1.3	18
115	A Novel [15N] Glutamine Flux using LC-MS/MS-SRM for Determination of Nucleosides and Nucleobases. Journal of Analytical & Bioanalytical Techniques, 2015, 6, .	0.6	3
116	Steroid Receptor Coactivator-3 (SRC-3/AIB1) as a Novel Therapeutic Target in Triple Negative Breast Cancer and Its Inhibition with a Phospho-Bufalin Prodrug. PLoS ONE, 2015, 10, e0140011.	1.1	31
117	Total Laryngectomy Versus Larynx Preservation for T4a Larynx Cancer: Patterns of Care and Survival Outcomes. International Journal of Radiation Oncology Biology Physics, 2015, 92, 594-601.	0.4	136
118	Structure of a Biologically Active Estrogen Receptor-Coactivator Complex on DNA. Molecular Cell, 2015, 57, 1047-1058.	4.5	137
119	Understanding contraindications for transoral robotic surgery (TORS) for oropharyngeal cancer. European Archives of Oto-Rhino-Laryngology, 2015, 272, 1551-1552.	0.8	76
120	Steroid receptor coactivators as therapeutic targets in the female reproductive system. Journal of Steroid Biochemistry and Molecular Biology, 2015, 154, 32-38.	1.2	17
121	CAPER Is Vital for Energy and Redox Homeostasis by Integrating Glucose-Induced Mitochondrial Functions via ERR-α-Gabpa and Stress-Induced Adaptive Responses via NF-κB-cMYC. PLoS Genetics, 2015, 11, e1005116.	1.5	22
122	miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Molecular Endocrinology, 2015, 29, 1170-1183.	3.7	32
123	Bufalin Is a Steroid Receptor Coactivator Inhibitor—Response. Cancer Research, 2015, 75, 1157-1157.	0.4	2
124	A Novel Chitosan-Hydrogel-Based Nanoparticle Delivery System for Local Inner Ear Application. Otology and Neurotology, 2015, 36, 341-347.	0.7	62
125	SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6068-77.	3.3	14
126	Estrogen Receptor Î ² Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell, 2015, 163, 960-974.	13.5	286

#	Article	IF	CITATIONS
127	Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell, 2015, 28, 240-252.	7.7	69
128	Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Current Topics in Microbiology and Immunology, 2015, 394, 143-176.	0.7	11
129	Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading. Molecular Cell, 2015, 60, 769-783.	4.5	60
130	Reprint of "Steroid receptor coactivators as therapeutic targets in the female reproductive system― Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 144-150.	1.2	2
131	When is radiofrequency ablation not indicated in head and neck squamous cell carcinoma management?. European Archives of Oto-Rhino-Laryngology, 2015, 272, 1045-1046.	0.8	2
132	Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis. Journal of Clinical Investigation, 2015, 125, 1174-1188.	3.9	78
133	Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition. Journal of Clinical Investigation, 2015, 125, 2808-2824.	3.9	70
134	Perturbing the Cellular Levels of Steroid Receptor Coactivator-2 Impairs Murine Endometrial Function. PLoS ONE, 2014, 9, e98664.	1.1	18
135	Proteomics Analysis of the Non-Muscle Myosin Heavy Chain IIa-Enriched Actin-Myosin Complex Reveals Multiple Functions within the Podocyte. PLoS ONE, 2014, 9, e100660.	1.1	14
136	Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. Journal of Molecular Endocrinology, 2014, 53, R47-R59.	1.1	51
137	GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18261-18266.	3.3	114
138	A Murine Uterine Transcriptome, Responsive to Steroid Receptor Coactivator-2, Reveals Transcription Factor 23 as Essential for Decidualization of Human Endometrial Stromal Cells1. Biology of Reproduction, 2014, 90, 75.	1.2	19
139	Bufalin Is a Potent Small-Molecule Inhibitor of the Steroid Receptor Coactivators SRC-3 and SRC-1. Cancer Research, 2014, 74, 1506-1517.	0.4	145
140	Steroid Receptor Coactivator 1 is an Integrator of Glucose and NAD+/NADH Homeostasis. Molecular Endocrinology, 2014, 28, 395-405.	3.7	14
141	Nuclear Receptor Signaling: A Home for Nuclear Receptor and Coregulator Signaling Research. Nuclear Receptor Signaling, 2014, 12, nrs.12006.	1.0	16
142	AR collaborates with $ER\hat{1}\pm$ in aromatase inhibitor-resistant breast cancer. Breast Cancer Research and Treatment, 2014, 147, 473-485.	1.1	97
143	Steroid Receptor Coactivator-2 Is a Dual Regulator of Cardiac Transcription Factor Function. Journal of Biological Chemistry, 2014, 289, 17721-17731.	1.6	13
144	Nuclear Receptor Coactivators: Master Regulators of Human Health and Disease. Annual Review of Medicine. 2014. 65. 279-292.	5.0	202

#	Article	IF	CITATIONS
145	SRC-2 Is an Essential Coactivator for Orchestrating Metabolism and Circadian Rhythm. Cell Reports, 2014, 6, 633-645.	2.9	65
146	Radiofrequency ablation in advanced head and neck cancer. European Archives of Oto-Rhino-Laryngology, 2014, 271, 207-210.	0.8	3
147	ERK3 Promotes Endothelial Cell Functions by Upregulating SRCâ€3/SP1â€Mediated VEGFR2 Expression. Journal of Cellular Physiology, 2014, 229, 1529-1537.	2.0	37
148	Hepatic SRC-1 Activity Orchestrates Transcriptional Circuitries of Amino Acid Pathways with Potential Relevance for Human Metabolic Pathogenesis. Molecular Endocrinology, 2014, 28, 1707-1718.	3.7	7
149	Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends in Endocrinology and Metabolism, 2014, 25, 337-347.	3.1	88
150	Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance. Neoplasia, 2014, 16, 390-402.	2.3	66
151	The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Human Reproduction Update, 2014, 20, 467-484.	5.2	73
152	Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids, 2014, 90, 39-43.	0.8	46
153	E2/Estrogen Receptor/Sjogren Syndrome-Associated Autoantigen Relieves Coactivator Activator-Induced G ₁ /S Arrest To Promote Breast Tumorigenicity. Molecular and Cellular Biology, 2014, 34, 1670-1681.	1.1	4
154	An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Research, 2014, 24, 809-819.	5.7	155
155	Late Consequential Surgical Bed Soft Tissue Necrosis in Advanced Oropharyngeal Squamous Cell Carcinomas Treated With Transoral Robotic Surgery and Postoperative Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 89, 981-988.	0.4	40
156	Identification of Verrucarin A as a Potent and Selective Steroid Receptor Coactivator-3 Small Molecule Inhibitor. PLoS ONE, 2014, 9, e95243.	1.1	33
157	Proteomic Analysis of Coregulators Bound to ERα on DNA and Nucleosomes Reveals Coregulator Dynamics. Molecular Cell, 2013, 51, 185-199.	4.5	107
158	18â€FDGâ€PET in the initial staging of sinonasal malignancy. Laryngoscope, 2013, 123, 2962-2966.	1.1	20
159	Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing. BMC Medical Genomics, 2013, 6, 21.	0.7	25
160	The REGÎ ³ Proteasome Regulates Hepatic Lipid Metabolism through Inhibition of Autophagy. Cell Metabolism, 2013, 18, 380-391.	7.2	71
161	Transoral robotic surgery and adjuvant therapy for oropharyngeal carcinomas and the influence of p16 ^{INK4a} on treatment outcomes. Laryngoscope, 2013, 123, 635-640.	1.1	44
162	A regulated delivery system for inner ear drug application. Journal of Controlled Release, 2013, 166, 268-276.	4.8	38

#	Article	IF	CITATIONS
163	Elwood V. Jensen (1920–2012): Father of the nuclear receptors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3707-3708.	3.3	10
164	Steroid Receptor Coactivator-1 Mediates Estrogenic Actions to Prevent Body Weight Gain in Female Mice. Endocrinology, 2013, 154, 150-158.	1.4	34
165	Gonadotropin-Releasing Hormone-Regulated Prohibitin Mediates Apoptosis of the Gonadotrope Cells. Molecular Endocrinology, 2013, 27, 1856-1870.	3.7	26
166	Research Resource: Loss of the Steroid Receptor Coactivators Confers Neurobehavioral Consequences. Molecular Endocrinology, 2013, 27, 1776-1787.	3.7	18
167	SRC-3 coactivator regulates cell resistance to cytotoxic stress via TRAF4-mediated p53 destabilization. Genes and Development, 2013, 27, 274-287.	2.7	41
168	Research Resource: Tissue- and Pathway-Specific Metabolomic Profiles of the Steroid Receptor Coactivator (SRC) Family. Molecular Endocrinology, 2013, 27, 366-380.	3.7	28
169	Acceleration of the Glycolytic Flux by Steroid Receptor Coactivator-2 Is Essential for Endometrial Decidualization. PLoS Genetics, 2013, 9, e1003900.	1.5	76
170	Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6997-7002.	3.3	210
171	REGÎ ³ deficiency promotes premature aging via the casein kinase 1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11005-11010.	3.3	60
172	RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6536-6541.	3.3	94
173	A <i>Sleeping Beauty</i> mutagenesis screen reveals a tumor suppressor role for <i>Ncoa2/Src-2</i> in liver cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1377-86.	3.3	67
174	Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor. Cell Research, 2012, 22, 1003-1021.	5.7	48
175	Uterine Development and Fertility Are Dependent on Gene Dosage of the Nuclear Receptor Coregulator REA. Endocrinology, 2012, 153, 3982-3994.	1.4	22
176	Minireview: Nuclear Receptor and Coregulator Proteomics—2012 and Beyond. Molecular Endocrinology, 2012, 26, 1646-1650.	3.7	42
177	DNA Transcription and Repair: A Confluence. Journal of Biological Chemistry, 2012, 287, 23266-23270.	1.6	11
178	The chemopreventive and clinically used agent curcumin sensitizes HPV ⁻ but not HPV ⁺ HNSCC to ionizing radiation, in vitro and in a mouse orthotopic model. Cancer Biology and Therapy, 2012, 13, 575-584.	1.5	33
179	Prohibitin-1 deficiency promotes inflammation and increases sensitivity to liver injury. Journal of Proteomics, 2012, 75, 5783-5792.	1.2	23
180	A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nature Medicine, 2012, 18, 1102-1111.	15.2	119

Bert W O'MALLEY

#	Article	IF	CITATIONS
181	Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nature Reviews Endocrinology, 2012, 8, 598-604.	4.3	223
182	Ablation of Steroid Receptor Coactivator-3 Resembles the Human CACT Metabolic Myopathy. Cell Metabolism, 2012, 15, 752-763.	7.2	36
183	Progesterone Receptors: A Key for Neuroprotection in Experimental Stroke. Endocrinology, 2012, 153, 3747-3757.	1.4	111
184	SRC-2 Coactivator Deficiency Decreases Functional Reserve in Response to Pressure Overload of Mouse Heart. PLoS ONE, 2012, 7, e53395.	1.1	22
185	Transoral robotic surgery: A multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope, 2012, 122, 1701-1707.	1.1	397
186	Transoral robotic surgery: Role in the management of upper aerodigestive tract tumors. Head and Neck, 2012, 34, 886-893.	0.9	50
187	Molecular imaging assisted surgery improves survival in a murine head and neck cancer model. International Journal of Cancer, 2012, 131, 1235-1242.	2.3	7
188	Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Molecular and Cellular Endocrinology, 2012, 348, 430-439.	1.6	141
189	Abstract 5153: Steroid receptor coactivator-2 mediates oncogenic reprogramming of cancer cell metabolism. Cancer Research, 2012, 72, 5153-5153.	0.4	3
190	ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. Journal of Clinical Investigation, 2012, 122, 1869-1880.	3.9	109
191	Nuclear Receptor Coactivators: Structural and Functional Biochemistry. Biochemistry, 2011, 50, 313-328.	1.2	88
192	Analysis of the Human Endogenous Coregulator Complexome. Cell, 2011, 145, 787-799.	13.5	383
193	Cellular Energy Depletion Resets Whole-Body Energy by Promoting Coactivator-Mediated Dietary Fuel Absorption. Cell Metabolism, 2011, 13, 35-43.	7.2	78
194	Safety evaluation of sinus surfactant solution on respiratory cilia function. International Forum of Allergy and Rhinology, 2011, 1, 280-283.	1.5	19
195	Small Molecule Inhibition of the Steroid Receptor Coactivators, SRC-3 and SRC-1. Molecular Endocrinology, 2011, 25, 2041-2053.	3.7	103
196	Repressor of Estrogen Receptor Activity (REA) Is Essential for Mammary Gland Morphogenesis and Functional Activities: Studies in Conditional Knockout Mice. Endocrinology, 2011, 152, 4336-4349.	1.4	25
197	Estrogen-Regulated Prohibitin Is Required for Mouse Uterine Development and Adult Function. Endocrinology, 2011, 152, 1047-1056.	1.4	32
198	ERasing breast cancer resistance through the kinome. Nature Medicine, 2011, 17, 660-661.	15.2	15

#	Article	IF	CITATIONS
199	Multiple coregulatory control of tyrosine hydroxylase gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4200-4205.	3.3	49
200	Minireview: Steroid Receptor Coactivator-3: A Multifarious Coregulator in Mammary Gland Metastasis. Endocrinology, 2011, 152, 19-25.	1.4	43
201	Cellular proteome, coregulators, endocrine system and the human brain: the Regulatory biology of humanism. Aging, 2011, 3, 22-25.	1.4	2
202	Abstract P245: Loss of Steroid Receptor Coactivator-2 in the Heart Results in a Return to the Fetal Gene Program. Circulation Research, 2011, 109, .	2.0	0
203	Silkâ€elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. Journal of Gene Medicine, 2010, 12, 572-579.	1.4	54
204	Selective neck dissection and deintensified postoperative radiation and chemotherapy for oropharyngeal cancer: A subset analysis of the university of pennsylvania transoral robotic surgery trial. Laryngoscope, 2010, 120, 1749-1755.	1.1	131
205	Masters of the genome. Nature Reviews Molecular Cell Biology, 2010, 11, 311-311.	16.1	8
206	RFWD3–Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4579-4584.	3.3	66
207	Steroid Receptor Coactivator (SRC) Family: Masters of Systems Biology. Journal of Biological Chemistry, 2010, 285, 38743-38750.	1.6	194
208	Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2431-2436.	3.3	108
209	Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11122-11127.	3.3	42
210	Estrogen receptor-α: molecular mechanisms and interactions with the ubiquitin proteasome system. Hormone Molecular Biology and Clinical Investigation, 2010, 1, 1-9.	0.3	3
211	Crosstalk among nuclear receptor coactivators and a membrane receptor promotes tumor cell growth and migration. Cell Cycle, 2010, 9, 2269-2270.	1.3	1
212	Minireview: The SRC Family of Coactivators: An Entre ìe to Understanding a Subset of Polygenic Diseases?. Molecular Endocrinology, 2010, 24, 279-285.	3.7	35
213	Global Characterization of Transcriptional Impact of the SRC-3 Coregulator. Molecular Endocrinology, 2010, 24, 859-872.	3.7	54
214	Research Resource: Expression Profiling Reveals Unexpected Targets and Functions of the Human Steroid Receptor RNA Activator (SRA) Gene. Molecular Endocrinology, 2010, 24, 1090-1105.	3.7	68
215	Modulation of Steroid Hormone Receptor Activity. Progress in Brain Research, 2010, 181, 153-176.	0.9	81
216	SRC-3Δ4 Mediates the Interaction of EGFR with FAK to Promote Cell Migration. Molecular Cell, 2010, 37, 321-332.	4.5	132

#	Article	IF	CITATIONS
217	SnapShot: NR Coregulators. Cell, 2010, 143, 172-172.e1.	13.5	14
218	The Coactivator SRC-1 Is an Essential Coordinator of Hepatic Glucose Production. Cell Metabolism, 2010, 12, 606-618.	7.2	55
219	Transoral Robotic Surgery for Parapharyngeal Space Tumors. Orl, 2010, 72, 332-336.	0.6	126
220	Foxa2-dependent hepatic gene regulatory networks depend on physiological state. Physiological Genomics, 2009, 38, 186-195.	1.0	24
221	Nuclear Receptor Coregulators in Cancer Biology. Cancer Research, 2009, 69, 8217-8222.	0.4	114
222	OTU Domain-containing Ubiquitin Aldehyde-binding Protein 1 (OTUB1) Deubiquitinates Estrogen Receptor (ER) α and Affects ERα Transcriptional Activity. Journal of Biological Chemistry, 2009, 284, 16135-16145.	1.6	81
223	Disruption of the <i>SRC-1</i> gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 151-156.	3.3	113
224	Skeletal Consequences of Deletion of Steroid Receptor Coactivator-2/Transcription Intermediary Factor-2. Journal of Biological Chemistry, 2009, 284, 18767-18777.	1.6	21
225	Biochemical Control of CARM1 Enzymatic Activity by Phosphorylation. Journal of Biological Chemistry, 2009, 284, 36167-36174.	1.6	58
226	The "Fourth Dimension―of Gene Transcription. Molecular Endocrinology, 2009, 23, 587-589.	3.7	10
227	Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Molecular Endocrinology, 2009, 23, 740-746.	3.7	109
228	An estrogen receptor alpha activity indicator model in mice. Genesis, 2009, 47, 815-824.	0.8	8
229	The predictive and therapeutic value of thymidine phosphorylase and dihydropyrimidine dehydrogenase in capecitabine (Xeloda)â€based chemotherapy for head and neck cancer. Laryngoscope, 2009, 119, 82-88.	1.1	14
230	Cytotoxicity and antiangiogenesis by fibroblast growth factor 2–targeted Adâ€TK cancer gene therapy. Laryngoscope, 2009, 119, 665-674.	1.1	14
231	Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Reviews Cancer, 2009, 9, 615-630.	12.8	431
232	Silk-Elastinlike Protein Polymer Hydrogels for Localized Adenoviral Gene Therapy of Head and Neck Tumors. Biomacromolecules, 2009, 10, 2183-2188.	2.6	51
233	Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends in Endocrinology and Metabolism, 2009, 20, 8-15.	3.1	85
234	Chapter 4 Emerging Roles of the Ubiquitin Proteasome System in Nuclear Hormone Receptor Signaling. Progress in Molecular Biology and Translational Science, 2009, 87, 117-135.	0.9	19

#	Article	IF	CITATIONS
235	Nuclear receptor coactivators: Regulation of turnover and function. FASEB Journal, 2009, 23, .	0.2	0
236	Report of a case of sinonasal undifferentiated carcinoma arising in a background of extensive nasal gliomatosis. Head and Neck, 2008, 30, 549-555.	0.9	5
237	Two worlds merged. Nature, 2008, 452, 946-947.	13.7	11
238	Novel Adenoviral Gene Delivery System Targeted Against Head and Neck Cancer. Laryngoscope, 2008, 118, 650-658.	1.1	15
239	Cracking the coregulator codes. Current Opinion in Cell Biology, 2008, 20, 310-315.	2.6	71
240	Atypical Protein Kinase C Regulates Dual Pathways for Degradation of the Oncogenic Coactivator SRC-3/AIB1. Molecular Cell, 2008, 29, 465-476.	4.5	80
241	Essential Phosphatases and a Phospho-Degron Are Critical for Regulation of SRC-3/AIB1 Coactivator Function and Turnover. Molecular Cell, 2008, 31, 835-849.	4.5	62
242	Dual Roles for Coactivator Activator and its Counterbalancing Isoform Coactivator Modulator in Human Kidney Cell Tumorigenesis. Cancer Research, 2008, 68, 7887-7896.	0.4	18
243	Absence of the SRC-2 Coactivator Results in a Glycogenopathy Resembling Von Gierke's Disease. Science, 2008, 322, 1395-1399.	6.0	153
244	SRC-3 Transcription-Coupled Activation, Degradation, and the Ubiquitin Clock: Is There Enough Coactivator to Go Around in Cells?. Science Signaling, 2008, 1, pe16.	1.6	31
245	The Nuclear Receptor Coactivator Amplified in Breast Cancer-1 Is Required for <i>Neu</i> (ErbB2/HER2) Activation, Signaling, and Mammary Tumorigenesis in Mice. Cancer Research, 2008, 68, 3697-3706.	0.4	90
246	The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17187-17192.	3.3	180
247	A Repressive Role for Prohibitin in Estrogen Signaling. Molecular Endocrinology, 2008, 22, 344-360.	3.7	115
248	The AlB1 Oncogene Promotes Breast Cancer Metastasis by Activation of PEA3-Mediated Matrix Metalloproteinase 2 (MMP2) and MMP9 Expression. Molecular and Cellular Biology, 2008, 28, 5937-5950.	1.1	169
249	Bone Growth and Turnover in Progesterone Receptor Knockout Mice. Endocrinology, 2008, 149, 2383-2390.	1.4	33
250	Commentary: The Year in Basic Science: Nuclear Receptors and Coregulators. Molecular Endocrinology, 2008, 22, 2751-2758.	3.7	26
251	Editorial: Coactivators and Corepressors: What's in a Name?. Molecular Endocrinology, 2008, 22, 2213-2214.	3.7	33

252 Nuclear Receptor Coregulators in Human Diseases. , 2008, , 1-133.

2

#	Article	IF	CITATIONS
253	Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5866-5871.	3.3	96
254	Specific Amino Acid Residues in the Basic Helix-Loop-Helix Domain of SRC-3 Are Essential for Its Nuclear Localization and Proteasome-Dependent Turnover. Molecular and Cellular Biology, 2007, 27, 1296-1308.	1.1	41
255	Coregulators in Adipogenesis: What Could we Learn from the SRC (p160) Coactivator Family?. Cell Cycle, 2007, 6, 2448-2452.	1.3	33
256	The p160 Steroid Receptor Coactivator 2, SRC-2, Regulates Murine Endometrial Function and Regulates Progesterone-Independent and -Dependent Gene Expression. Endocrinology, 2007, 148, 4238-4250.	1.4	53
257	Coregulators: From Whence Came These "Master Genes― Molecular Endocrinology, 2007, 21, 1009-1013.	3.7	112
258	Distinct Temporal and Spatial Activities of RU486 on Progesterone Receptor Function in Reproductive Organs of Ovariectomized Mice. Endocrinology, 2007, 148, 2471-2486.	1.4	26
259	Regulation of SRC-3 Intercompartmental Dynamics by Estrogen Receptor and Phosphorylation. Molecular and Cellular Biology, 2007, 27, 6913-6932.	1.1	62
260	Coregulators: transducing signal from transcription to alternative splicing. Trends in Endocrinology and Metabolism, 2007, 18, 122-129.	3.1	61
261	SRC-3 Coactivator Functional Lifetime Is Regulated by a Phospho-Dependent Ubiquitin Time Clock. Cell, 2007, 129, 1125-1140.	13.5	211
262	An Essential Function of the SRC-3 Coactivator in Suppression of Cytokine mRNA Translation and Inflammatory Response. Molecular Cell, 2007, 25, 765-778.	4.5	129
263	Ubiquitin- and ATP-Independent Proteolytic Turnover of p21 by the REGÎ ³ -Proteasome Pathway. Molecular Cell, 2007, 26, 831-842.	4.5	241
264	Nuclear Receptor Coregulators: Judges, Juries, and Executioners of Cellular Regulation. Molecular Cell, 2007, 27, 691-700.	4.5	438
265	Selective Estrogen-Receptor Modulators and Antihormonal Resistance in Breast Cancer. Journal of Clinical Oncology, 2007, 25, 5815-5824.	0.8	285
266	Nuclear Receptor Coregulators and Human Disease. Endocrine Reviews, 2007, 28, 575-587.	8.9	265
267	Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations. International Journal of Radiation Oncology Biology Physics, 2007, 69, S125-S128.	0.4	87
268	DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biology, 2007, 9, 604-611.	4.6	394
269	ROLES OF STEROID RECEPTOR COACTIVATORS IN CATEGORICAL REPROGRAMMING DURING cAMP/PKA MEDIATED DECIDUALIZATION IN HUMAN ENDOMETRIAL STROMAL CELLS. Biology of Reproduction, 2007, 77, 120-120.	1.2	4
270	The SRC-3/AIB1 Coactivator Is Degraded in a Ubiquitin- and ATP-Independent Manner by the REGÎ ³ Proteasome. Cell, 2006, 124, 381-392.	13.5	244

#	Article	IF	CITATIONS
271	The Expanding Cosmos of Nuclear Receptor Coactivators. Cell, 2006, 125, 411-414.	13.5	294
272	Transoral Robotic Surgery (TORS): Glottic Microsurgery in a Canine Model. Journal of Voice, 2006, 20, 263-268.	0.6	129
273	SLIRP, a Small SRA Binding Protein, Is a Nuclear Receptor Corepressor. Molecular Cell, 2006, 22, 657-668.	4.5	118
274	Steroid receptor coactivator 2 is essential for progesterone-dependent uterine function and mammary morphogenesis: Insights from the mouse—implications for the human. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 22-31.	1.2	21
275	Molecular Endocrinology—From Birth to 20th-Year Anniversary. Molecular Endocrinology, 2006, 20, 1197-1197.	3.7	0
276	A scoring system for the follow up study of nuclear receptor coactivator complexes. Nuclear Receptor Signaling, 2006, 4, nrs.04014.	1.0	9
277	Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO Journal, 2006, 25, 2453-2464.	3.5	62
278	Assessment of Intraoperative Safety in Transoral Robotic Surgery. Laryngoscope, 2006, 116, 165-168.	1.1	156
279	Transoral Robotic Surgery (TORS) for Base of Tongue Neoplasms. Laryngoscope, 2006, 116, 1465-1472.	1.1	596
280	Steroid Receptor Coactivator (SRC)-1 and SRC-3 Differentially Modulate Tissue-Specific Activation Functions of the Progesterone Receptor. Molecular Endocrinology, 2006, 20, 45-55.	3.7	113
281	The Genomic Analysis of the Impact of Steroid Receptor Coactivators Ablation on Hepatic Metabolism. Molecular Endocrinology, 2006, 20, 1138-1152.	3.7	63
282	Stimulation of Steroid Receptor Coactivator-3 (SRC-3) Gene Overexpression by a Positive Regulatory Loop of E2F1 and SRC-3. Molecular Endocrinology, 2006, 20, 3105-3119.	3.7	57
283	WW Domain Binding Protein-2, an E6-Associated Protein Interacting Protein, Acts as a Coactivator of Estrogen and Progesterone Receptors. Molecular Endocrinology, 2006, 20, 2343-2354.	3.7	69
284	Signaling within a Coactivator Complex: Methylation of SRC-3/AIB1 Is a MolecularSwitch for Complex Disassembly. Molecular and Cellular Biology, 2006, 26, 7846-7857.	1.1	144
285	MOLECULAR BIOLOGY: Little Molecules with Big Goals. Science, 2006, 313, 1749-1750.	6.0	66
286	Steroid Receptor Coactivator 2 Is Critical for Progesterone-Dependent Uterine Function and Mammary Morphogenesis in the Mouse. Molecular and Cellular Biology, 2006, 26, 6571-6583.	1.1	102
287	Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17868-17873.	3.3	101
288	Haploinsufficiency of the corepressor of estrogen receptor activity (REA) enhances estrogen receptor function in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16716-16721.	3.3	42

#	Article	IF	CITATIONS
289	Steroid Receptor Coactivator-1-Deficient Mice Exhibit Altered Hypothalamic-Pituitary-Adrenal Axis Function. Endocrinology, 2006, 147, 1322-1332.	1.4	61
290	Mice Lacking the Amplified in Breast Cancer 1/Steroid Receptor Coactivator-3 Are Resistant to Chemical Carcinogen–Induced Mammary Tumorigenesis. Cancer Research, 2005, 65, 7993-8002.	0.4	95
291	Combination Nonviral Interleukin-2 Gene Immunotherapy For Head and Neck Cancer: From Bench Top to Bedside. Laryngoscope, 2005, 115, 391-404.	1.1	36
292	Informed Consent in Sinus Surgery: Link between Demographics and Patient Desires. Laryngoscope, 2005, 115, 826-831.	1.1	17
293	Informed Consent in Endoscopic Sinus Surgery: The Patient Perspective. Laryngoscope, 2005, 115, 492-494.	1.1	37
294	Robotic Microlaryngeal Surgery: A Technical Feasibility Study Using the daVinci Surgical Robot and an Airway Mannequin. Laryngoscope, 2005, 115, 780-785.	1.1	161
295	Transoral Robotic Surgery: Supraglottic Laryngectomy in a Canine Model. Laryngoscope, 2005, 115, 1315-1319.	1.1	234
296	Expanding functional diversity of the coactivators. Trends in Biochemical Sciences, 2005, 30, 126-132.	3.7	158
297	Dynamic Cell Type Specificity of SRC-1 Coactivator in Modulating Uterine Progesterone Receptor Function in Mice. Molecular and Cellular Biology, 2005, 25, 8150-8165.	1.1	44
298	Rapid Estrogen-Induced Phosphorylation of the SRC-3 Coactivator Occurs in an Extranuclear Complex Containing Estrogen Receptor. Molecular and Cellular Biology, 2005, 25, 8273-8284.	1.1	71
299	Genetic Deletion of the Repressor of Estrogen Receptor Activity (REA) Enhances the Response to Estrogen in Target Tissues In Vivo. Molecular and Cellular Biology, 2005, 25, 1989-1999.	1.1	89
300	Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9487-9492.	3.3	46
301	PAC1 Receptors Mediate Pituitary Adenylate Cyclase-Activating Polypeptide- and Progesterone-Facilitated Receptivity in Female Rats. Molecular Endocrinology, 2005, 19, 2798-2811.	3.7	26
302	Proteomic Analysis of Steady-State Nuclear Hormone Receptor Coactivator Complexes. Molecular Endocrinology, 2005, 19, 2451-2465.	3.7	105
303	Transcriptional Regulation by Steroid Receptor Coactivator Phosphorylation. Endocrine Reviews, 2005, 26, 393-399.	8.9	147
304	The Nuclear Receptor Signaling Atlas: Development of a Functional Atlas of Nuclear Receptors. Molecular Endocrinology, 2005, 19, 2433-2436.	3.7	31
305	A Life-Long Search for the Molecular Pathways of Steroid Hormone Action. Molecular Endocrinology, 2005, 19, 1402-1411.	3.7	107
306	Splicing potentiation by growth factor signals via estrogen receptor phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8126-8131.	3.3	58

#	Article	IF	CITATIONS
307	A Subset of Nuclear Receptor Coregulators Act as Coupling Proteins during Synthesis and Maturation of RNA Transcripts. Molecular and Cellular Biology, 2005, 25, 5307-5316.	1.1	90
308	Dual Functions of the Steroid Hormone Receptor Coactivator 3 in Modulating Resistance to Thyroid Hormone. Molecular and Cellular Biology, 2005, 25, 7687-7695.	1.1	29
309	Nuclear Hormone Receptor Coregulator GRIP1 Suppresses, whereas SRC1A and p/CIP Coactivate, by Domain-specific Binding of MyoD*. Journal of Biological Chemistry, 2005, 280, 3129-3137.	1.6	21
310	Regulatable atrial natriuretic peptide gene therapy for hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13789-13794.	3.3	52
311	Peptidyl-Prolyl Isomerase 1 (Pin1) Serves as a Coactivator of Steroid Receptor by Regulating the Activity of Phosphorylated Steroid Receptor Coactivator 3 (SRC-3/AIB1). Molecular and Cellular Biology, 2005, 25, 9687-9699.	1.1	85
312	Inhibition of NK Cell Activity through TGF-β1 by Down-Regulation of NKG2D in a Murine Model of Head and Neck Cancer. Journal of Immunology, 2005, 175, 5541-5550.	0.4	140
313	Identification of target genes in breast cancer cells directly regulated by the SRC-3/AIB1 coactivator. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1339-1344.	3.3	92
314	Steroid Hormone Receptor Coactivation and Alternative RNA Splicing by U2AF65-Related Proteins CAPERα and CAPERβ. Molecular Cell, 2005, 17, 429-439.	4.5	173
315	Formation of an IKKα-Dependent Transcription Complex Is Required for Estrogen Receptor-Mediated Gene Activation. Molecular Cell, 2005, 18, 71-82.	4.5	174
316	Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 337-346.	1.2	54
317	Rush hour at the promoter: How the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 139-151.	1.2	61
318	Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology, 2005, 48, 14-24.	2.0	134
319	Robot-Assisted Pharyngeal and Laryngeal Microsurgery: Results of Robotic Cadaver Dissections. Laryngoscope, 2005, 115, 1003-1008.	1.1	139
320	Urban Renewal in the Nucleus: Is Protein Turnover by Proteasomes Absolutely Required for Nuclear Receptor-Regulated Transcription?. Molecular Endocrinology, 2004, 18, 493-499.	3.7	125
321	Selective Estrogen Receptor Modulators 4-Hydroxytamoxifen and Raloxifene Impact the Stability and Function of SRC-1 and SRC-3 Coactivator Proteins. Molecular and Cellular Biology, 2004, 24, 14-24.	1.1	87
322	Pituitary Adenylate Cyclase-Activating Peptide: A Pivotal Modulator of Steroid-Induced Reproductive Behavior in Female Rodents. Molecular Endocrinology, 2004, 18, 173-183.	3.7	39
323	Partially redundant functions of SRC-1 and TIF2 in postnatal survival and male reproduction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4453-4458.	3.3	76
324	Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2270-2274.	3.3	110

#	Article	IF	CITATIONS
325	CoAA, a Nuclear Receptor Coactivator Protein at the Interface of Transcriptional Coactivation and RNA Splicing. Molecular and Cellular Biology, 2004, 24, 442-453.	1.1	149
326	AIB1/SRC-3 Deficiency Affects Insulin-Like Growth Factor I Signaling Pathway and Suppresses v-Ha-ras-induced Breast Cancer Initiation and Progression in Mice. Cancer Research, 2004, 64, 1875-1885.	0.4	178
327	The Ubiquitin-Conjugating Enzyme UBCH7 Acts as a Coactivator for Steroid Hormone Receptors. Molecular and Cellular Biology, 2004, 24, 8716-8726.	1.1	79
328	Coregulator Function: A Key to Understanding Tissue Specificity of Selective Receptor Modulators. Endocrine Reviews, 2004, 25, 45-71.	8.9	860
329	In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. Journal of Controlled Release, 2004, 94, 433-445.	4.8	191
330	A contemporary understanding of progesterone receptor function. Mechanisms of Ageing and Development, 2004, 125, 669-678.	2.2	78
331	Nuclear Receptor Coregulators Are New Players in Nervous System Development and Function. Molecular Neurobiology, 2004, 30, 307-326.	1.9	33
332	Results of a Search for the Mechanisms of Steroid Receptor Regulation of Gene Expression. Annals of the New York Academy of Sciences, 2004, 1038, 80-87.	1.8	8
333	Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. International Journal of Cancer, 2004, 111, 398-403.	2.3	121
334	Effects of Loss of Steroid Receptor Coactivator-1 on the Skeletal Response to Estrogen in Mice. Endocrinology, 2004, 145, 913-921.	1.4	70
335	Selective Phosphorylations of the SRC-3/AIB1 Coactivator Integrate Genomic Reponses to Multiple Cellular Signaling Pathways. Molecular Cell, 2004, 15, 937-949.	4.5	290
336	GCNF-dependent repression of BMP-15 and GDF-9 mediates gamete regulation of female fertility. EMBO Journal, 2003, 22, 4070-4081.	3.5	82
337	Progesterone involvement in breast development and tumorigenesis—as revealed by progesterone receptor "knockout―and "knockin―mouse models. Steroids, 2003, 68, 779-787.	0.8	92
338	Regulation of expression of thyroid hormone receptor isoforms and coactivators in liver and heart by thyroid hormone. Molecular and Cellular Endocrinology, 2003, 203, 65-75.	1.6	52
339	Steroid Receptor RNA Activator Stimulates Proliferation as Well as Apoptosis In Vivo. Molecular and Cellular Biology, 2003, 23, 7163-7176.	1.1	139
340	Progesterone and Glucocorticoid Receptors Recruit Distinct Coactivator Complexes and Promote Distinct Patterns of Local Chromatin Modification. Molecular and Cellular Biology, 2003, 23, 3763-3773.	1.1	215
341	Specificity of thyroid hormone receptor subtype and steroid receptor coactivator-1 on thyroid hormone action. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E36-E46.	1.8	38
342	Unfolding the Action of Progesterone Receptors. Journal of Biological Chemistry, 2003, 278, 39261-39264.	1.6	175

#	Article	IF	CITATIONS
343	Hierarchical Affinities and a Bipartite Interaction Model for Estrogen Receptor Isoforms and Full-length Steroid Receptor Coactivator (SRC/p160) Family Members. Journal of Biological Chemistry, 2003, 278, 13271-13277.	1.6	32
344	Thyroid Hormone Receptor-Specific Interactions with Steroid Receptor Coactivator-1 in the Pituitary. Molecular Endocrinology, 2003, 17, 882-894.	3.7	31
345	Modulation by Steroid Receptor Coactivator-1 of Target-Tissue Responsiveness in Resistance to Thyroid Hormone. Endocrinology, 2003, 144, 4144-4153.	1.4	37
346	Combination Nonviral Interleukin 2 Gene Therapy and External-Beam Radiation Therapy for Head and Neck Cancer. JAMA Otolaryngology, 2003, 129, 618.	1.5	12
347	Steroid Receptor Coactivator-1 Is Not Required for Androgen-Mediated Sexual Differentiation of Spinal Motoneurons. Neuroendocrinology, 2003, 78, 45-51.	1.2	17
348	Sequentiality and processivity of nuclear receptor coregulators in regulation of target gene expression. Nuclear Receptor Signaling, 2003, 1, nrs.01010.	1.0	12
349	SRC-1 Null Mice Exhibit Moderate Motor Dysfunction and Delayed Development of Cerebellar Purkinje Cells. Journal of Neuroscience, 2003, 23, 213-222.	1.7	137
350	Co-activators and Corepressors for the Nuclear Receptor Superfamily. , 2003, , 268-274.		0
351	Minireview: Nuclear Receptor Coactivators—An Update. Endocrinology, 2002, 143, 2461-2465.	1.4	304
352	Nonlinear partial differential equations and applications: Progesterone receptor knockout mice have an improved glucose homeostasis secondary to Â-cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15644-15648.	3.3	142
353	Coactivator/corepressor ratios modulate PR-mediated transcription by the selective receptor modulator RU486. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7940-7944.	3.3	151
354	The Epidermis as a Bioreactor: Topically Regulated Cutaneous Delivery into the Circulation. Human Gene Therapy, 2002, 13, 1075-1080.	1.4	21
355	Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16081-16086.	3.3	173
356	Acute Disruption of Select Steroid Receptor Coactivators Prevents Reproductive Behavior in Rats and Unmasks Genetic Adaptation in Knockout Mice. Molecular Endocrinology, 2002, 16, 1511-1523.	3.7	115
357	A Novel LacZ Reporter Mouse Reveals Complex Regulation of the Progesterone Receptor Promoter During Mammary Gland Development. Molecular Endocrinology, 2002, 16, 2475-2489.	3.7	135
358	Thyroid Function in Mice with Compound Heterozygous and Homozygous Disruptions of SRC-1 and TIF-2 Coactivators: Evidence for Haploinsufficiency. Endocrinology, 2002, 143, 1554-1557.	1.4	44
359	Steroid Receptor Coactivator-1 Deficiency Causes Variable Alterations in the Modulation of T ₃ -Regulated Transcription of Genes <i>in Vivo</i> . Endocrinology, 2002, 143, 1346-1352.	1.4	49
360	Reduction of Coactivator Expression by Antisense Oligodeoxynucleotides Inhibits ERα Transcriptional Activity and MCF-7 Proliferation. Molecular Endocrinology, 2002, 16, 253-270.	3.7	65

#	Article	IF	CITATIONS
361	Genetic Ablation of the Steroid Receptor Coactivator-Ubiquitin Ligase, E6-AP, Results in Tissue-Selective Steroid Hormone Resistance and Defects in Reproduction. Molecular and Cellular Biology, 2002, 22, 525-535.	1.1	73
362	Mechanism of Progesterone Receptor Action in the Brain. , 2002, , 643-682.		9
363	Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator Activity by lκB Kinase. Molecular and Cellular Biology, 2002, 22, 3549-3561.	1.1	253
364	Regulation of Alternative Splicing by the ATP-Dependent DEAD-Box RNA Helicase p72. Molecular and Cellular Biology, 2002, 22, 5698-5707.	1.1	113
365	[31] Ligand-inducible transgene regulation for gene therapy. Methods in Enzymology, 2002, 346, 551-561.	0.4	16
366	Coordinate Regulation of Transcription and Splicing by Steroid Receptor Coregulators. Science, 2002, 298, 416-419.	6.0	342
367	Reproductive Functions of Progesterone Receptors. Endocrine Reviews, 2002, 57, 339-355.	7.1	317
368	Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators. Cell, 2002, 108, 465-474.	13.5	1,345
369	SRC-1 and TIF2 Control Energy Balance between White and Brown Adipose Tissues. Cell, 2002, 111, 931-941.	13.5	401
370	Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 3-14.	1.2	108
371	Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Reviews in Endocrine and Metabolic Disorders, 2002, 3, 185-192.	2.6	92
372	Interleukin 2 gene transfer prevents NKG2D suppression and enhances antitumor efficacy in combination with cisplatin for head and neck squamous cell cancer. Cancer Research, 2002, 62, 4023-8.	0.4	18
373	Mechanisms of Hormonal Prevention of Breast Cancer. Annals of the New York Academy of Sciences, 2001, 952, 23-35.	1.8	42
374	FRAP reveals that mobility of oestrogen receptor- $\hat{l}\pm$ is ligand- and proteasome-dependent. Nature Cell Biology, 2001, 3, 15-23.	4.6	373
375	Gene Therapy for Head and Neck Cancer Using Vaccinia Virus Expressing IL-2 in a Murine Model, with Evidence of Immune Suppression. Molecular Therapy, 2001, 4, 551-558.	3.7	40
376	Ligand-Mediated Assembly and Real-Time Cellular Dynamics of Estrogen Receptor α-Coactivator Complexes in Living Cells. Molecular and Cellular Biology, 2001, 21, 4404-4412.	1.1	141
377	Loss of Orphan Receptor Germ Cell Nuclear Factor Function Results in Ectopic Development of the Tail Bud and a Novel Posterior Truncation. Molecular and Cellular Biology, 2001, 21, 663-677.	1.1	94
378	Nuclear Receptors, Coregulators, Ligands, and Selective Receptor Modulators. Annals of the New York Academy of Sciences, 2001, 949, 3-5.	1.8	82

#	Article	IF	CITATIONS
379	Reproductive Functions of the Progesterone Receptor. Journal of the Society for Gynecologic Investigation, 2000, 7, S25-S32.	1.9	29
380	An issue of tissues: divining the split personalities of selective estrogen receptor modulators. Nature Medicine, 2000, 6, 960-962.	15.2	61
381	The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed in mouse mammary tumorigenesis. Breast Cancer Research and Treatment, 2000, 62, 185-195.	1.1	20
382	Phosphorylation of Steroid Receptor Coactivator-1. Journal of Biological Chemistry, 2000, 275, 4475-4483.	1.6	235
383	p300 Requires Its Histone Acetyltransferase Activity and SRC-1 Interaction Domain To Facilitate Thyroid Hormone Receptor Activation in Chromatin. Molecular and Cellular Biology, 2000, 20, 2031-2042.	1.1	118
384	Ligand-Dependent Regulation of Vascular Endothelial Growth Factor and Erythropoietin Expression by a Plasmid-Based Autoinducible GeneSwitch System. Molecular Therapy, 2000, 2, 276-287.	3.7	65
385	8-Bromo-Cyclic AMP Induces Phosphorylation of Two Sites in SRC-1 That Facilitate Ligand-Independent Activation of the Chicken Progesterone Receptor and Are Critical for Functional Cooperation between SRC-1 and CREB Binding Protein. Molecular and Cellular Biology, 2000, 20, 8720-8730.	1.1	226
386	The 26S Proteasome Is Required for Estrogen Receptor-α and Coactivator Turnover and for Efficient Estrogen Receptor-α Transactivation. Molecular Cell, 2000, 5, 939-948.	4.5	526
387	From ligand to response: generating diversity in nuclear receptor coregulator function. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 351-356.	1.2	89
388	Nuclear Receptor Coregulators: Cellular and Molecular Biology*. Endocrine Reviews, 1999, 20, 321-344.	8.9	1,501
389	Progesterone via Its Receptor Antagonizes the Pro-Inflammatory Activity of Estrogen in the Mouse Uterus1. Biology of Reproduction, 1999, 60, 1158-1165.	1.2	176
390	Ligand-Dependent Regulation of Plasmid-Based Transgene Expression in Vivo. Human Gene Therapy, 1999, 10, 1499-1507.	1.4	61
391	Limitations of adenovirus-mediated interleukin-2 gene therapy for oral cancer. Laryngoscope, 1999, 109, 389-395.	1.1	21
392	Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functionsProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998 Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 3-12.	1.2	368
393	Distribution of D5 Dopamine Receptor mRNA in Rat Ventromedial Hypothalamic Nucleus. Biochemical and Biophysical Research Communications, 1999, 266, 556-559.	1.0	21
394	Activation of PPAR Coactivator-1 Through Transcription Factor Docking. Science, 1999, 286, 1368-1371.	6.0	538
395	[16] Antiprogestin regulable gene switch for induction of gene expression n vivo. Methods in Enzymology, 1999, 306, 281-294.	0.4	12
396	An Antiprogestin Regulable Gene Switch for Induction of Gene Expression in Vivo. Advances in Pharmacology, 1999, 47, 343-355.	1.2	12

#	Article	IF	CITATIONS
397	A novel RU486 inducible system for the activation and repression of genes. Advanced Drug Delivery Reviews, 1998, 30, 23-31.	6.6	25
398	Regulation of Male Sexual Behavior by Progesterone Receptor, Sexual Experience, and Androgen. Hormones and Behavior, 1998, 34, 294-302.	1.0	94
399	Partial Hormone Resistance in Mice with Disruption of the Steroid Receptor Coactivator-1 (SRC-1) Gene. Science, 1998, 279, 1922-1925.	6.0	641
400	The Steroid Receptor Coactivator-1 Contains Multiple Receptor Interacting and Activation Domains That Cooperatively Enhance the Activation Function 1 (AF1) and AF2 Domains of Steroid Receptors. Journal of Biological Chemistry, 1998, 273, 12101-12108.	1.6	363
401	Stromal Progesterone Receptors Mediate the Inhibitory Effects of Progesterone on Estrogen-Induced Uterine Epithelial Cell Deoxyribonucleic Acid Synthesis ¹ . Endocrinology, 1998, 139, 4708-4713.	1.4	184
402	Mutual and Intercompartmental Regulation of Estrogen Receptor and Progesterone Receptor Expression in the Mouse Uterus1. Biology of Reproduction, 1998, 59, 1143-1152.	1.2	169
403	Coactivator and Corepressor Regulation of the Agonist/Antagonist Activity of the Mixed Antiestrogen, 4-Hydroxytamoxifen. Molecular Endocrinology, 1997, 11, 657-666.	3.7	585
404	Inducible System Designed for Future Gene Therapy. , 1997, 63, 401-414.		6
405	Gene Silencing by Chicken Ovalbumin Upstream Promoter-Transcription Factor I (COUP-TFI) Is Mediated by Transcriptional Corepressors, Nuclear Receptor-Corepressor (N-CoR) and Silencing Mediator for Retinoic Acid Receptor and Thyroid Hormone Receptor (SMRT). Molecular Endocrinology, 1997, 11, 714-724.	3.7	149
406	Progesterone, in Addition to Estrogen, Induces Cyclin D1 Expression in the Murine Mammary Epithelial Cell, in Vivo*. Endocrinology, 1997, 138, 3933-3939.	1.4	90
407	Differential Phosphorylation of Chicken Progesterone Receptor in Hormone-dependent and Ligand-independent Activation. Journal of Biological Chemistry, 1997, 272, 10457-10463.	1.6	52
408	Progesterone Receptor Function from a Behavioral Perspective. Hormones and Behavior, 1997, 31, 244-255.	1.0	133
409	Steroid receptor coactivator-1 is a histone acetyltransferase. Nature, 1997, 389, 194-198.	13.7	1,153
410	Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnology, 1997, 15, 239-243.	9.4	224
411	Use of PRKO mice to study the role of progesterone in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 343-354.	1.0	82
412	Reproductive phenotypes of the progesterone receptor null mutant mouse. Journal of Steroid Biochemistry and Molecular Biology, 1996, 56, 67-77.	1.2	247
413	Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hearing Research, 1995, 88, 181-189.	0.9	70
414	An Alternative Ligand-Independent Pathway for Activation of Steroid Receptors. , 1995, 50, 333-347.		61

#	Article	IF	CITATIONS
415	The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor and positively regulates the activities of GAL4 and the HAP1 activator. Molecular Genetics and Genomics, 1994, 245, 724-733.	2.4	36
416	The human estrogen receptor hormone binding domain dimerizes independently of ligand activation. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 447-452.	1.2	32
417	The ER-positive / PgR-negative breast cancer phenotype is not associated with mutations within the DNA binding domain. Breast Cancer Research and Treatment, 1993, 26, 191-202.	1.1	33
418	DNA- and Viral-Mediated Gene Transfer in Follicular Cells. Laryngoscope, 1993, 103, 1084???1092.	1.1	3
419	Chicken progesterone receptor expressed in Saccharomyces cerevisiae is correctly phosphorylated at all four Ser-Pro phosphorylation sites. Biochemistry, 1993, 32, 9563-9569.	1.2	25
420	Ligand-dependent conformational changes in thyroid hormone and retinoic acid receptors are potentially enhanced by heterodimerization with retinoic X receptor. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 643-661.	1.2	87
421	Autologous, Orthotopic Thyroid Follicular Cell Transplantation: A Surgical Component of Ex Vivo Somatic Gene Therapy. Otolaryngology - Head and Neck Surgery, 1993, 108, 51-62.	1.1	13
422	In vivotranscription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide. Nucleic Acids Research, 1993, 21, 2789-2796.	6.5	110
423	Analysis of the Mechanism of Steroid Hormone Receptor-Dependent Gene Activation in Cell-Free Systems. Endocrine Reviews, 1992, 13, 525-535.	8.9	60
424	Molecular Pathways of Steroid Receptor Action. Biology of Reproduction, 1992, 46, 163-167.	1.2	158
425	A novel, highly regulated, rapidly inducible system for the expression of chicken progesterone receptor, cPRA, in Saccharomyces cerevisiae. Gene, 1992, 114, 51-58.	1.0	20
426	New insights into activation of the steroid hormone receptor superfamily. Trends in Pharmacological Sciences, 1992, 13, 318-323.	4.0	102
427	The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell, 1992, 69, 703-713.	13.5	388
428	Modulation of progesterone receptor binding to progesterone response elements by positioned nucleosomes. Biochemistry, 1992, 31, 1570-1578.	1.2	21
429	Molecular Mechanism of Action of a Steroid Hormone Receptor. , 1991, 47, 1-26.		46
430	Production of transgenic mice from cryopreserved fertilized ova. Molecular Reproduction and Development, 1991, 30, 313-319.	1.0	37
431	Steroid hormone receptors andIn vitro transcription. BioEssays, 1991, 13, 73-78.	1.2	19
432	Steroid hormone receptors as transactivators of gene expression. Breast Cancer Research and Treatment, 1991, 18, 67-71.	1.1	27

#	Article	IF	CITATIONS
433	Genetic Defects of the 1,25-Dihydroxyvitamin D ₃ Receptor. Journal of Receptors and Signal Transduction, 1991, 11, 699-716.	1.2	55
434	Mechanisms of regulation of gene transcription by steroid receptors. Molecular Aspects of Cellular Regulation, 1991, 6, 101-116.	1.4	11
435	Identification of a functional intermediate in receptor activation in progesterone-dependent cell-free transcription. Nature, 1990, 345, 547-550.	13.7	116
436	Dimerization of the Chicken Progesterone Receptorin VitroCan Occur in the Absence of Hormone and DNA. Molecular Endocrinology, 1990, 4, 1782-1790.	3.7	46
437	COUP-TF gene: a structure unique for the steroid/thyroid receptor superfamily. Nucleic Acids Research, 1990, 18, 6857-6862.	6.5	73
438	Steroid Receptor Family: Structure and Functions. Endocrine Reviews, 1990, 11, 201-220.	8.9	802
439	The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell, 1990, 60, 247-257.	13.5	231
440	Antibodies to Chicken Progesterone Receptor Peptide 523–536 Recognize a Site Exposed in Receptor-Deoxyribonucleic Acid Complexes but not in Receptor-Heat Shock Protein-90 Complexes*. Endocrinology, 1989, 125, 2494-2501.	1.4	30
441	COUP transcription factor is a member of the steroid receptor superfamily. Nature, 1989, 340, 163-166.	13.7	490
442	Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell, 1989, 57, 443-448.	13.5	280
443	Functional Domains of the Human Vitamin D ₃ Receptor Regulate Osteocalcin Gene Expression. Molecular Endocrinology, 1989, 3, 635-644.	3.7	147
444	Multiple protein binding sites within the ovalbumin gene 5′-flanking region: isolation and characterization of sequence-specific binding proteins. Nucleic Acids Research, 1989, 17, 6693-6711.	6.5	18
445	Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity. Biochemistry, 1988, 27, 358-367.	1.2	31
446	The vitamin d receptor: A primitive steroid receptor related to thyroid hormone receptor. The Journal of Steroid Biochemistry, 1988, 30, 41-46.	1.3	65
447	Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation. Cell, 1988, 55, 361-369.	13.5	614
448	A Steroid Response Element Can Function in the Absence of a Distal Promoter. Molecular Endocrinology, 1988, 2, 1286-1293.	3.7	24
449	Steroid Hormone-Dependent Interaction of Human Progesterone Receptor with its Target Enhancer Element. Molecular Endocrinology, 1988, 2, 1221-1229.	3.7	95
450	Structure-function relationships of the chicken progesterone receptor. Biochemical Society Transactions, 1988, 16, 683-687.	1.6	3

#	Article	IF	CITATIONS
451	VITAMIN D3 RECEPTORS: MOLECULAR STRUCTURE OF THE PROTEIN AND ITS CHROMOSOMAL GENE. , 1988, , 215-224.		1
452	Structural Organization and Regulation of the Chicken Estrogen Receptor. Molecular Endocrinology, 1987, 1, 25-35.	3.7	108
453	Structure-Function Properties of the Chicken Progesterone Receptor A Synthesized from Complementary Deoxyribonucleic Acid. Molecular Endocrinology, 1987, 1, 791-801.	3.7	64
454	Interactions between a DNA-binding transcription factor (COUP) and a non-DNA binding factor (S300-II). Cell, 1987, 50, 701-709.	13.5	175
455	The A and B forms of the chicken progesterone receptor arise by alternate initiation of translation of a unique mRNA. Biochemical and Biophysical Research Communications, 1987, 149, 493-501.	1.0	206
456	Deoxyribonuclease I sensitivity of the ovomucoid-ovoinhibitor gene complex in oviduct nuclei and relative location of CR1 repetitive sequences. Biochemistry, 1987, 26, 6831-6840.	1.2	11
457	High-yield high-performance liquid chromatographic analysis of steroid hormone receptors on glass columns. Analytical Biochemistry, 1987, 161, 291-299.	1.1	5
458	Amino acid sequence of a chicken heat shock protein derived from the complementary DNA nucleotide sequence. Biochemistry, 1986, 25, 6244-6251.	1.2	82
459	Molecular cloning of a steroid-regulated 108K beat shock protein gene from hen oviduct. Nucleic Acids Research, 1986, 14, 10053-10069.	6.5	25
460	Identification by Exonuclease Footprinting of a Distal Promoter-Binding Protein from HeLa Cell Extracts. DNA and Cell Biology, 1985, 4, 233-240.	5.1	12
461	Characterization of Three Chicken Pseudogenes for U1 RNA. DNA and Cell Biology, 1984, 3, 281-286.	5.1	9
462	Structural analysis of chicken oviduct progesterone receptor using monoclonal antibodies to the subunit B protein. Biochemistry, 1984, 23, 4427-4435.	1.2	36
463	Monoclonal antibody to the hen oviduct progesterone receptor produced following in vitro immunization. The Journal of Steroid Biochemistry, 1984, 20, 43-50.	1.3	17
464	Progesterone receptor binding to DNA: studies by sedimentation velocity methods. The Journal of Steroid Biochemistry, 1984, 20, 89-94.	1.3	8
465	A 5′-flanking sequence essential for progesterone regulation of an ovalbumin fusion gene. Nature, 1983, 305, 551-554.	13.7	136
466	Actively transcribed genes are associated with the nuclear matrix. Nature, 1983, 306, 607-609.	13.7	401
467	Characterization of deoxyribonucleic acid sequences at the 5' and 3' borders of the 100-kilobase pair ovalbumin gene domain. Biochemistry, 1983, 22, 306-315.	1.2	64
468	Chromatin structure of the ovalbumin gene family in the chicken oviduct. Biochemistry, 1983, 22, 21-30.	1.2	38

#	Article	IF	CITATIONS
469	Definition of the ovalbumin gene promoter by transfer of an ovalglobin fusion gene into cultured cells. Nucleic Acids Research, 1983, 11, 6733-6754.	6.5	43
470	Higherâ€Order Structural Determinants for Expression of the Ovalbumin Gene Family. Novartis Foundation Symposium, 1983, 98, 80-95.	1.2	1
471	Heterogeneous initiation regions for transcription of the chicken ovomucoid gene. Nucleic Acids Research, 1982, 10, 5553-5567.	6.5	38
472	The evolution of a complex eucaryotic gene. Metabolism: Clinical and Experimental, 1982, 31, 646-653.	1.5	3
473	Selective binding of chicken progesterone receptor a subunit to a DNA fragment containing ovalbumin gene sequences. Biochemical and Biophysical Research Communications, 1982, 105, 96-104.	1.0	77
474	Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry, 1982, 21, 4945-4953.	1.2	169
475	CHROMATIN STRUCTURE OF THE OVALBUMIN GENE DOMAIN11This work was supported by grants from the National Institutes of Health HD8188, and the Baylor Center for Population Research and Reproductive Biology HD7495 , 1982, , 87-104.		3
476	Interaction of the chick oviduct progesterone receptor with deoxyribonucleic acid. Biochemistry, 1981, 20, 2481-2491.	1.2	43
477	Analysis of chicken progesterone receptor structure using a spontaneous sheep antibody. Biochemistry, 1981, 20, 6798-6803.	1.2	24
478	Purification of chick oviduct progesterone receptor apoprotein. The Journal of Steroid Biochemistry, 1981, 15, 63-68.	1.3	7
479	Complete nucleotide sequence of the chicken chromosomal ovalbumin gene and its biological significance. Biochemistry, 1981, 20, 6437-6446.	1.2	108
480	Phosphorylation of hen progesterone receptor by cAMP dependent protein kinase. Biochemical and Biophysical Research Communications, 1981, 102, 513-519.	1.0	124
481	REGULATION OF GENE EXPRESSION IN THE CHICK OVIDUCT. Biochemical Society Transactions, 1981, 9, 18P-18P.	1.6	0
482	Mechanisms by which eucaryotic genes evolve. Breast Cancer Research and Treatment, 1981, 1, 327-337.	1.1	0
483	A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats. Nucleic Acids Research, 1981, 9, 5383-5398.	6.5	110
484	Structure and Hormonal Regulation of the Ovalbumin Gene Cluster. Current Topics in Cellular Regulation, 1981, 18, 437-453.	9.6	0
485	Studies on the Structure and Function of the Chicken Progesterone Receptor. , 1981, 37, 583-633.		57
486	Covalent attachment of a progestational steroid to chick oviduct progesterone receptor by photoaffinity labelling. Nature, 1980, 283, 784-786.	13.7	134

#	Article	IF	CITATIONS
487	Definition of the 5â€ ² and 3â€ ² ends of transcripts of the ovalbumin gene. Cell, 1980, 19, 63-68.	13.5	70
488	Inactivation of chick oviduct progesterone receptors. The Journal of Steroid Biochemistry, 1980, 12, 115-120.	1.3	49
489	Induction of ovalbumin mRNA by estrogen in the chick oviduct. The Journal of Steroid Biochemistry, 1980, 12, 185-191.	1.3	1
490	Processing of high molecular weight ovalbumin and ovomucoid precursor RNAs to messenger RNA. Cell, 1980, 22, 219-230.	13.5	82
491	Progesterone-binding components of chick oviduct: analysis of receptor structure by limited proteolysis. Biochemistry, 1980, 19, 343-349.	1.2	90
492	Differential hormonal responsiveness of the ovalbumin gene and its pseudogenes in the chick oviduct. Biochemistry, 1980, 19, 5586-5592.	1.2	42
493	Deoxyribonuclease I sensitivity of the nontranscribed sequences flanking the 5' and 3' ends of the ovomucoid gene and the ovalbumin and its related X and Y genes in hen oviduct nuclei. Biochemistry, 1980, 19, 4403-4411.	1.2	76
494	Evidence that deoxyribonucleic acid sequences flanking the ovalbumin gene are not transcribed. Biochemistry, 1980, 19, 1755-1761.	1.2	30
495	Progesterone-binding components of chick oviduct: partial purification and characterization of a calcium-activated protease which hydrolyzes the progesterone receptor. Biochemistry, 1980, 19, 335-343.	1.2	142
496	Identification of potential ovomucoid mRNA precursors in chick oviduct nuclei. Nature, 1979, 278, 328-331.	13.7	55
497	Purification and characterization of the chick oviduct progesterone receptor a subunit. The Journal of Steroid Biochemistry, 1979, 10, 1-12.	1.3	128
498	Transcription of a cloned ovalbumin ds-cDNA in Xenopus laevis oocytes. Biochemical and Biophysical Research Communications, 1979, 86, 1227-1233.	1.0	2
499	Absence of an obligatory lag period in the induction of ovalbumin mRNA by estrogen. Biochemical and Biophysical Research Communications, 1979, 88, 1412-1418.	1.0	19
500	Cloning and expression of a pseudo-ovalbumin gene. Biochemical and Biophysical Research Communications, 1979, 89, 997-1005.	1.0	8
501	Effect of estrogen on ovalbumin gene expression in differentiated nontarget tissues. Biochemistry, 1979, 18, 5726-5731.	1.2	21
502	Ribosome binding site analysis of ovalbumin messenger ribonucleic acid. Biochemistry, 1979, 18, 5798-5808.	1.2	28
503	The ovalbumin gene: Alleles created by mutations in the intervening sequences of the natural gene. Cell, 1979, 16, 201-211.	13.5	92
504	Molecular structure and flanking nucleotide sequences of the natural chicken ovomucoid gene. Cell, 1979, 18, 829-842.	13.5	80

#	Article	IF	CITATIONS
505	Steroid Hormone Regulation of Specific Gene Expression. Vitamins and Hormones, 1979, 36, 259-295.	0.7	42
506	THE OVOMUCOID GENE ORGANIZATION, STRUCTURE AND REGULATIONâ€fâ€fSupported by NIH grant HD-8188 (B.W.O.), American Cancer Society Research Grant BC-101 and Robert A. Welch Foundation Grant Q-611 (A.R.M.) and American Cancer Society Fellowship PF-1211 (J.P.S.). S.L.C.W. is an Associate Investigator of the Howard Hughes Medical Institute , 1979, , 15-53.	3	0
507	A COMPARISON OF THE SEQUENCE ORGANIZATION OF THE CHICKEN OVALBUMIN AND OVOMUCOID GENES. , 1979, , 281-299.		0
508	The natural ovalbumin gene contains seven intervening sequences. Nature, 1978, 274, 328-333.	13.7	108
509	Transcription of structural and intervening sequences in the ovalbumin gene and identification of potential ovalbumin mRNA precursors. Cell, 1978, 15, 671-685.	13.5	262
510	Molecular cloning of ovomucoid gene sequences from partially purified ovomucoid messenger RNA. Biochemistry, 1978, 17, 5763-5772.	1.2	49
511	Regulation of gene expression in the chick oviduct. 18. Effect of estrogen on gene expression in the chick oviduct. Regulation of the ovomucoid gene. Biochemistry, 1978, 17, 5773-5780.	1.2	69
512	Effect of estrogen on gene expression in the chick oviduct. Nucleic Acids and Protein Synthesis, 1978, 521, 689-707.	1.7	16
513	The Chick Oviduct Progesterone Receptor. , 1978, , 321-372.		17
514	Molecular Structure and Analysis of Progesterone Receptors. , 1978, , 189-224.		19
515	The Mechanism of Steroid-Hormone Regulation of Transcription of Specific Eukaryotic Genes. Progress in Molecular Biology and Translational Science, 1977, 19, 403-419.	1.9	49
516	The ovalbumin gene: Cloning of a complete ds-cDNA in a bacterial plasmid. Gene, 1977, 2, 217-231.	1.0	81
517	Ovalbumin gene: purification of the coding strand. Biochemistry, 1977, 16, 5670-5676.	1.2	18
518	MECHANISMS OF STEROID HORMONE ACTION. Journal of Investigative Dermatology, 1977, 68, 1-4.	0.3	39
519	Purification and Properties of Progesterone Receptors from Chick Oviduct. Annals of the New York Academy of Sciences, 1977, 286, 64-80.	1.8	23
520	EFFECT OF PROGESTERONE RECEPTORS ON TRANSCRIPTION. Annals of the New York Academy of Sciences, 1977, 286, 147-160.	1.8	13
521	Analysis of Cellular Messenger RNA Using Complementary DNA Probes. , 1977, , 297-329.		6
522	Purification and Characterization of Eukaryotic Messenger RNA and Unique Sequence Genes. , 1977, , 267-295.		0

Bert W O'MALLEY

#	Article	IF	CITATIONS
523	Secondary structure of ovalbumin messenger RNA. Biochemistry, 1976, 15, 2054-2062.	1.2	46
524	Steroid hormone receptor fraction stimulation of RNA synthesis: A caution. Biochemical and Biophysical Research Communications, 1976, 69, 106-113.	1.0	13
525	The biology and mechanism of steroid hormone receptor interaction with the eukaryotic nucleus. Biochemical Pharmacology, 1976, 25, 1-12.	2.0	173
526	A review of regulation of gene expression by steroid hormone receptors. The Journal of Steroid Biochemistry, 1976, 7, 1151-1159.	1.3	59
527	Steroids and the practical aspects of performing binding studies. The Journal of Steroid Biochemistry, 1976, 7, 321-326.	1.3	38
528	Kinetics of progesterone binding to the chick oviduct receptor protein. The Journal of Steroid Biochemistry, 1976, 7, 723-732.	1.3	55
529	The Receptors of Steroid Hormones. Scientific American, 1976, 234, 32-43.	1.0	161
530	Studies on the Structure and Function of Chick-Oviduct Chromatin. 1. Fractionation by ECTHAM-cellulose Chromatography and Physico-chemical Characterization. FEBS Journal, 1976, 66, 423-433.	0.2	10
531	Studies on the Structure and Function of Chick-Oviduct Chromatin. 2. Biochemical Characterization of Two Chromatin Fractions Isolated by ECTHAM-cellulose Chromatography. FEBS Journal, 1976, 66, 435-441.	0.2	6
532	Mechanism of Action of the Sex Steroid Hormones. New England Journal of Medicine, 1976, 294, 1372-1381.	13.9	75
533	THE SYNTHESIS, ISOLATION, AMPLIFICATION AND TRANSCRIPTION OF THE OVALBUMIN GENE. , 1976, , 309-329.		1
534	Estrogen induction of ovalbumin mRNA: Evidence for transcription control. Molecular and Cellular Biochemistry, 1975, 7, 33-42.	1.4	19
535	Purification of human uterine progesterone receptor. Nature, 1975, 253, 271-272.	13.7	56
536	Hormones, Genes, and Cancer. Hospital Practice (1995), 1975, 10, 65-73.	0.5	1
537	Progesterone Receptors of Chick Oviduct: Identification of 6S Receptor Dimers. Biology of Reproduction, 1975, 12, 134-142.	1.2	117
538	An analysis of the binding of the chick oviduct progesterone-receptor to chromatin. Biochimica Et Biophysica Acta - General Subjects, 1975, 399, 403-419.	1.1	24
539	Hormone inducible messenger RNA. Life Sciences, 1975, 17, 1039-1047.	2.0	29
540	Preparation and preliminary characterization of purified ovalbumin messenger RNA from the hen oviduct. Biochemistry, 1975, 14, 69-78.	1.2	233

#	Article	IF	CITATIONS
541	Hormonal Regulation of Specific Gene Expression in the Chick Oviduct. , 1975, , 271-315.		26
542	MOLECULAR MECHANISMS OF STEROID HORMONE ACTION. , 1975, , 989-999.		0
543	Effect of estrogen on gene expression in the chick oviduct. III. Hybridization studies with [3H] messenger RNA and [3H] complementary DNA under conditions of DNA excess. Cell Differentiation, 1974, 3, 103-116.	1.3	27
544	Molecular mechanisms of steroid hormone action. The Journal of Steroid Biochemistry, 1974, 5, 989-999.	1.3	22
545	Effects of Female Steroid Hormones on Target Cell Nuclei. , 1974, , 379-416.		6
546	Binding of Steroids to Progesterone Receptor Proteins in Chick Oviduct and Human Uterus. Journal of Biological Chemistry, 1974, 249, 5924-5932.	1.6	187
547	Estrogen-mediated cell proliferation during chick oviduct development and its modulation by progesterone. Developmental Biology, 1973, 30, 411-417.	0.9	53
548	Effect of estrogen on gene expression in the chick oviduct. I. Deoxyribonucleic acid-deoxyribonucleic acid renaturation studies. Biochemistry, 1973, 12, 2803-2809.	1.2	41
549	Effect of estrogen on gene expression in the chick oviduct. II. Transcription of chick tritiated unique deoxyribonucleic acid as measured by hybridization in ribonucleic acid excess. Biochemistry, 1973, 12, 2809-2816.	1.2	55
550	Progesterone Binding in the Mouse and Rat Uterus1. Endocrinology, 1972, 91, 738-746.	1.4	230
551	Protein biosynthesis on chick oviduct polyribosomes. III. Stimulation of cell-free polypeptide synthesis by a protein fraction extracted from chick oviduct polyribosones. Biochemistry, 1972, 11, 646-652.	1.2	18
552	Progesterone receptor components: Identification of subunits binding to the target-cell genome. The Journal of Steroid Biochemistry, 1972, 3, 617-629.	1.3	47
553	Mechanism of estrogen action: Early transcriptional and translational events. Metabolism: Clinical and Experimental, 1972, 21, 357-370.	1.5	39
554	Mechanisms of Interaction of a Hormone—Receptor Complex with the Genome of a Eukaryotic Target Cell. Nature, 1972, 235, 141-144.	13.7	275
555	Progesterone-binding Protein of Chick Oviduct. Journal of Biological Chemistry, 1972, 247, 2401-2407.	1.6	169
556	Progesterone-binding Components of Chick Oviduct. Journal of Biological Chemistry, 1972, 247, 1368-1374.	1.6	169
557	Progesterone-binding Components of Chick Oviduct. Journal of Biological Chemistry, 1972, 247, 51-59.	1.6	351
558	Unified hypothesis for early biochemical sequence of events in steroid hormone action. Metabolism: Clinical and Experimental, 1971, 20, 981-988.	1.5	39

#	Article	IF	CITATIONS
559	Protein biosynthesis on chick oviduct polyribosomes. I. Changes during estrogen-mediated tissue differentiation. Biochemistry, 1971, 10, 1561-1570.	1.2	44
560	Protein biosynthesis on chick oviduct polyribosomes. II. Regulation by progesterone. Biochemistry, 1971, 10, 1570-1576.	1.2	19
561	Progesterone-binding Components of Chick Oviduct. Journal of Biological Chemistry, 1971, 246, 4188-4197.	1.6	296
562	Progesterone-binding Components of Chick Oviduct. Journal of Biological Chemistry, 1971, 246, 1117-1122.	1.6	144
563	ASSESSMENT OF SEX STEROID ACTION IN VITRO. European Journal of Endocrinology, 1971, 68, S318-S336.	1.9	12
564	Progesterone-binding Components of Chick Oviduct. Journal of Biological Chemistry, 1970, 245, 6085-6096.	1.6	298
565	ESTROGEN-INDUCED CYTODIFFERENTIATION OF THE OVALBUMIN-SECRETING GLANDS OF THE CHICK OVIDUCT. Journal of Cell Biology, 1969, 40, 8-27.	2.3	208
566	DIVISION OF BIOCHEMISTRY: HORMONAL REGULATION OF NUCLEIC ACID AND PROTEIN SYNTHESIS*. Transactions of the New York Academy of Sciences, 1969, 31, 478-503.	0.2	37
567	Studies on the Mechanism of Steroid Hormone Regulation of Synthesis of Specific Proteins. , 1969, 25, 105-160.		166
568	Altered Gene Expression during Differentiation : Population Changes in Hybridizable RNA after Stimulation of the Chick Oviduct with Oestrogen. Nature, 1968, 218, 1249-1251.	13.7	42
569	Changes in hybridizable nuclear RNA during progesterone induction of a specific oviduct protein. Biochemical and Biophysical Research Communications, 1968, 32, 595-598.	1.0	13
570	Ribonucleic acid polymerase activity of the chick oviduct during steroid-induced synthesis of a specific protein. Nucleic Acids and Protein Synthesis, 1968, 157, 187-194.	1.7	55
571	Studies on the mechanism of action of progesterone in regulation of the synthesis of specific protein. Journal of Clinical Investigation, 1968, 47, 654-664.	3.9	73
572	Effect of Pyrogen on Blood Levels of Pituitary Trophic Hormones. Observations of the Usefulness of the Growth Hormone Response in the Detection of Pituitary Disease. Journal of Clinical Endocrinology and Metabolism, 1967, 27, 219-226.	1.8	61
573	In Vitro Hormonal Induction of a Specific Protein (Avidin) in Chick Oviduct*. Biochemistry, 1967, 6, 2546-2551.	1.2	128
574	Estrogen stimulation of synthesis of specific proteins and RNA polymerase activity in the immature chick oviduct. Nucleic Acids and Protein Synthesis, 1967, 145, 204-207.	1.7	68
575	Avidin assay: A new procedure suitable for tissue fractions. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1967, 140, 174-176.	1.7	38
576	Hormonal induction of specific proteins in chick oviduct cell cultures. Biochemical and Biophysical Research Communications, 1967, 28, 1-7.	1.0	22

Bert W O'MALLEY

#	Article	IF	CITATIONS
577	Thyroid-stimulating hormone in thyroid dysgenesis. Journal of Pediatrics, 1967, 71, 714-717.	0.9	5
578	Progesterone, in Addition to Estrogen, Induces Cyclin D1 Expression in the Murine Mammary Epithelial Cell, in Vivo. , 0, .		28
579	Stromal Progesterone Receptors Mediate the Inhibitory Effects of Progesterone on Estrogen-Induced Uterine Epithelial Cell Deoxyribonucleic Acid Synthesis*This work was supported by NIH Grants AG-13784 and HD-07857 , 0, .		61
580	Reconstitution of Estrogen-Dependent Transcriptional Activation of an Adenoviral Target Gene in Select Regions of the Rat Mammary Gland. , 0, .		8
581	Thyroid Function in Mice with Compound Heterozygous and Homozygous Disruptions of SRC-1 and TIF-2 Coactivators: Evidence for Haploinsufficiency. , 0, .		15
582	Gene Silencing by Chicken Ovalbumin Upstream Promoter-Transcription Factor I (COUP-TFI) Is Mediated by Transcriptional Corepressors, Nuclear Receptor-Corepressor (N-CoR) and Silencing Mediator for Retinoic Acid Receptor and Thyroid Hormone Receptor (SMRT). , 0, .		65