
Carey J Simonson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy and Buildings, 2006, 38, 1270-1282.	3.1	282
2	Energy wheel effectiveness: part l—development of dimensionless groups. International Journal of Heat and Mass Transfer, 1999, 42, 2161-2170.	2.5	151
3	A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 2014, 30, 538-554.	8.2	146
4	Performance analysis of a membrane liquid desiccant air-conditioning system. Energy and Buildings, 2013, 62, 559-569.	3.1	138
5	Numerical model and effectiveness correlations for a run-around heat recovery system with combined counter and cross flow exchangers. International Journal of Heat and Mass Transfer, 2009, 52, 5827-5840.	2.5	136
6	The effect of structures on indoor humidity - possibility to improve comfort and perceived air quality. Indoor Air, 2002, 12, 243-251.	2.0	123
7	Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment, 2015, 84, 228-237.	3.0	122
8	Performance testing of a counter-cross-flow run-around membrane energy exchanger (RAMEE) system for HVAC applications. Energy and Buildings, 2010, 42, 1139-1147.	3.1	110
9	State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews, 2016, 58, 1152-1183.	8.2	106
10	Energy wheel effectiveness: part II—correlations. International Journal of Heat and Mass Transfer, 1999, 42, 2171-2185.	2.5	93
11	An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data. International Journal of Heat and Mass Transfer, 2007, 50, 4527-4539.	2.5	88
12	Generation of entropy in micro thermofluidic and thermochemical energy systems-A critical review. International Journal of Heat and Mass Transfer, 2020, 163, 120471.	2.5	85
13	Applicability and optimum control strategy of energy recovery ventilators in different climatic conditions. Energy and Buildings, 2010, 42, 1376-1385.	3.1	82
14	State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review. Renewable and Sustainable Energy Reviews, 2014, 39, 700-728.	8.2	78
15	Crystallization fouling of CaCO3 – Analysis of experimental thermal resistance and its uncertainty. International Journal of Heat and Mass Transfer, 2012, 55, 6927-6937.	2.5	77
16	Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review. Applied Energy, 2014, 127, 202-218.	5.1	77
17	Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV. Applied Energy, 2014, 116, 134-148.	5.1	77
18	Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger (LAMEE) when used for air dehumidification and salt solution regeneration. International Journal of Heat and Mass Transfer, 2014, 68, 119-131.	2.5	76

#	Article	IF	CITATIONS
19	Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Solar Energy, 2014, 102, 56-73.	2.9	72
20	Transient behavior of run-around heat and moisture exchanger system. Part І: Model formulation and verification. International Journal of Heat and Mass Transfer, 2009, 52, 6000-6011.	2.5	68
21	Analytical model based performance evaluation, sizing and coupling flow optimization of liquid desiccant run-around membrane energy exchanger systems. Energy and Buildings, 2013, 62, 248-257.	3.1	68
22	A theoretical model to predict frosting limits in cross-flow air-to-air flat plate heat/energy exchangers. Energy and Buildings, 2016, 110, 404-414.	3.1	68
23	Numerical model of a small-scale liquid-to-air membrane energy exchanger: Parametric study of membrane resistance and air side convective heat transfer coefficient. Applied Thermal Engineering, 2013, 61, 245-258.	3.0	64
24	Design and testing of a novel 3-fluid liquid-to-air membrane energy exchanger (3-fluid LAMEE). International Journal of Heat and Mass Transfer, 2016, 92, 312-329.	2.5	63
25	An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data. International Journal of Heat and Mass Transfer, 2007, 50, 4915-4926.	2.5	61
26	Steady-state performance of a run-around membrane energy exchanger (RAMEE) for a range of outdoor air conditions. International Journal of Heat and Mass Transfer, 2011, 54, 1814-1824.	2.5	61
27	Uncertainties in energy and economic performance of HVAC systems and energy recovery ventilators due to uncertainties in building and HVAC parameters. Applied Thermal Engineering, 2013, 50, 732-742.	3.0	59
28	Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review. Renewable and Sustainable Energy Reviews, 2013, 26, 464-479.	8.2	57
29	Energy consumption and ventilation performance of a naturally ventilated ecological house in a cold climate. Energy and Buildings, 2005, 37, 23-35.	3.1	56
30	Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data. International Journal of Heat and Mass Transfer, 2008, 51, 3091-3102.	2.5	55
31	Heat and Moisture Transfer in Energy Wheels During Sorption, Condensation, and Frosting Conditions. Journal of Heat Transfer, 1998, 120, 699-708.	1.2	52
32	Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane energy exchanger. International Journal of Heat and Mass Transfer, 2015, 89, 1258-1276.	2.5	52
33	Modeling CaCO3 crystallization fouling on a heat exchanger surface – Definition of fouling layer properties and model parameters. International Journal of Heat and Mass Transfer, 2015, 83, 84-98.	2.5	52
34	Numerical and experimental data set for benchmarking hygroscopic buffering models. International Journal of Heat and Mass Transfer, 2010, 53, 3638-3654.	2.5	51
35	+Transient characteristics of a liquid-to-air membrane energy exchanger (LAMEE) experimental data with correlations. International Journal of Heat and Mass Transfer, 2012, 55, 6682-6694.	2.5	50
36	Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation. Applied Energy, 2015, 151, 32-40.	5.1	50

#	Article	IF	CITATIONS
37	The elastic and moisture transfer properties of polyethylene and polypropylene membranes for use in liquid-to-air energy exchangers. Journal of Membrane Science, 2007, 302, 136-149.	4.1	49
38	Small-scale single-panel liquid-to-air membrane energy exchanger (LAMEE) test facility development, commissioning and evaluating the steady-state performance. Energy and Buildings, 2013, 66, 424-436.	3.1	48
39	Effectiveness of energy wheels from transient measurements. Part I: Prediction of effectiveness and uncertainty. International Journal of Heat and Mass Transfer, 2006, 49, 52-62.	2.5	46
40	Performance of a Run-Around System for HVAC Heat and Moisture Transfer Applications Using Cross-Flow Plate Exchangers Coupled with Aqueous Lithium Bromide. HVAC and R Research, 2006, 12, 313-336.	0.9	45
41	Reliability of material data measurements for hygroscopic buffering. International Journal of Heat and Mass Transfer, 2010, 53, 5355-5363.	2.5	45
42	Solution-side effectiveness for a liquid-to-air membrane energy exchanger used as a dehumidifier/regenerator. Applied Energy, 2014, 113, 872-882.	5.1	45
43	Sensitivity of the performance of a flat-plate liquid-to-air membrane energy exchanger (LAMEE) to the air and solution channel widths and flow maldistribution. International Journal of Heat and Mass Transfer, 2015, 84, 1082-1100.	2.5	45
44	Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates. Energy and Buildings, 2016, 119, 129-142.	3.1	45
45	Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope: Part I – Field Measurements. Journal of Thermal Envelope and Building Science, 2004, 28, 63-101.	0.5	44
46	Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy and Buildings, 2006, 38, 1283-1292.	3.1	44
47	Application of humidity sensors and an interactive device. Sensors and Actuators B: Chemical, 2006, 115, 93-101.	4.0	44
48	Convective mass transfer coefficient for a hydrodynamically developed airflow in a short rectangular duct. International Journal of Heat and Mass Transfer, 2007, 50, 2376-2393.	2.5	44
49	Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. International Journal of Heat and Mass Transfer, 2010, 53, 526-539.	2.5	43
50	Performance testing of a novel 3-fluid liquid-to-air membrane energy exchanger (3-fluid LAMEE) under desiccant solution regeneration operating conditions. International Journal of Heat and Mass Transfer, 2016, 95, 773-786.	2.5	42
51	Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation. International Journal of Heat and Mass Transfer, 2005, 48, 3319-3330.	2.5	40
52	Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates. Energy and Buildings, 2017, 135, 95-108.	3.1	40
53	Heat and Moisture Transfer in Desiccant Coated Rotary Energy Exchangers: Part I. Numerical Model. HVAC and R Research, 1997, 3, 325-350.	0.9	39
54	Transient behavior of run-around heat and moisture exchanger system. Part ID†: Sensitivity studies for a range of initial conditions. International Journal of Heat and Mass Transfer, 2009, 52, 6012-6020.	2.5	37

#	Article	IF	CITATIONS
55	CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces. International Journal of Heat and Mass Transfer, 2016, 97, 618-630.	2.5	35
56	Transient heat and moisture transfer characteristics of a liquid-to-air membrane energy exchanger (LAMEE) model verification and extrapolation. International Journal of Heat and Mass Transfer, 2013, 66, 757-771.	2.5	34
57	Capacity matching in heat-pump membrane liquid desiccant air conditioning systems. International Journal of Refrigeration, 2014, 48, 166-177.	1.8	34
58	Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope: Part II – Verification and Numerical Studies. Journal of Thermal Envelope and Building Science, 2004, 28, 161-185.	0.5	32
59	Application of neural networks to predict the steady state performance of a Run-Around Membrane Energy Exchanger. International Journal of Heat and Mass Transfer, 2012, 55, 1628-1641.	2.5	32
60	A comprehensive review of dehumidifiers and regenerators for liquid desiccant air conditioning system. Energy Conversion and Management, 2021, 240, 114234.	4.4	32
61	Effectiveness of energy wheels from transient measurements: Part Il—Results and verification. International Journal of Heat and Mass Transfer, 2006, 49, 63-77.	2.5	29
62	Material properties and measurements for semi-permeable membranes used in energy exchangers. Journal of Membrane Science, 2014, 453, 328-336.	4.1	29
63	Determination of air-to-air heat wheel sensible effectiveness using temperature step change data. International Journal of Heat and Mass Transfer, 2015, 87, 312-326.	2.5	29
64	Life cycle assessment of residential ventilation units in a cold climate. Building and Environment, 2005, 40, 15-27.	3.0	27
65	Modeling of the packed bed drying of paddy rice using the local volume averaging (LVA) approach. Food Research International, 2006, 39, 712-720.	2.9	26
66	Energetic, economic and environmental analysis of a health-care facility HVAC system equipped with a run-around membrane energy exchanger. Energy and Buildings, 2014, 69, 112-121.	3.1	26
67	Experimental methods for detecting frosting in cross-flow air-to-air energy exchangers. Experimental Thermal and Fluid Science, 2016, 77, 100-115.	1.5	26
68	Testing and modelling of a novel ceiling panel for maintaining space relative humidity by moisture transfer. International Journal of Heat and Mass Transfer, 2010, 53, 3961-3968.	2.5	25
69	Performance testing of 2-fluid and 3-fluid liquid-to-air membrane energy exchangers for HVAC applications in cold–dry climates. International Journal of Heat and Mass Transfer, 2017, 106, 558-569.	2.5	25
70	Contaminant transfer in run-around membrane energy exchangers. Energy and Buildings, 2014, 70, 94-105.	3.1	23
71	Determination of air-to-air energy wheels latent effectiveness using humidity step test data. International Journal of Heat and Mass Transfer, 2016, 103, 501-515.	2.5	23
72	Moisture Performance of an Airtight, Vapor-permeable Building Envelope in a Cold Climate. Journal of Thermal Envelope and Building Science, 2005, 28, 205-226.	0.5	22

#	Article	IF	CITATIONS
73	Sorption Study of a Starch Biopolymer as an Alternative Desiccant for Energy Wheels. ACS Sustainable Chemistry and Engineering, 2016, 4, 1262-1273.	3.2	22
74	Heat and Moisture Transfer in Desiccant Coated Rotary Energy Exchangers: Part II. Validation and Sensitivity Studies. HVAC and R Research, 1997, 3, 351-368.	0.9	21
75	Heat and mass transfer performance comparison between a direct-contact liquid desiccant packed bed and a liquid-to-air membrane energy exchanger for air dehumidification. Science and Technology for the Built Environment, 2017, 23, 2-15.	0.8	21
76	Performance investigation of liquid-to-air membrane energy exchanger under low solution/air heat capacity rates ratio conditions. Building Services Engineering Research and Technology, 2015, 36, 535-545.	0.9	20
77	A frosting limit model of air-to-air quasi-counter-flow membrane energy exchanger for use in cold climates. Applied Thermal Engineering, 2017, 111, 776-785.	3.0	20
78	Development of a small-scale test facility for effectiveness evaluation of fixed-bed regenerators. Applied Thermal Engineering, 2020, 174, 115263.	3.0	19
79	Transient Humidity Measurements—Part I: Sensor Calibration and Characteristics. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 1074-1079.	2.4	18
80	A Field Study of a Low-Flow Internally Cooled/Heated Liquid Desiccant Air Conditioning System: Quasi-Steady and Transient Performance. Journal of Solar Energy Engineering, Transactions of the ASME, 2016, 138, .	1.1	18
81	Measurement of convective heat transfer coefficients in a randomly packed bed of silica gel particles using IHTP analysis. Applied Thermal Engineering, 2016, 106, 361-370.	3.0	17
82	Application of neural networks to predict the transient performance of a Run-Around Membrane Energy Exchanger for yearly non-stop operation. International Journal of Heat and Mass Transfer, 2012, 55, 5403-5416.	2.5	16
83	Characterization of the Evolution of Crystallization Fouling in Membranes. ACS Omega, 2018, 3, 17188-17198.	1.6	16
84	Energy performance comparison of a 3-fluid and 2-fluid liquid desiccant membrane air-conditioning systems in an office building. Energy, 2019, 176, 437-456.	4.5	16
85	Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS Omega, 2020, 5, 6113-6121.	1.6	15
86	Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications. ACS Omega, 2020, 5, 9529-9539.	1.6	15
87	Applicability of a heat and moisture transfer panel (HAMP) for maintaining space relative humidity in an office building using TRNSYS. Energy and Buildings, 2013, 66, 338-345.	3.1	14
88	Thermal hysteresis in fibrous insulation. International Journal of Heat and Mass Transfer, 1993, 36, 4433-4441.	2.5	13
89	Effect of Axial Radiation on Heat Transfer in a Thermally and Hydrodynamically Developing Flow between Parallel Plates. Numerical Heat Transfer; Part A: Applications, 2007, 52, 911-934.	1.2	13
90	Steady-State Performance of a Small-Scale Liquid-to-Air Membrane Energy Exchanger for Different Heat and Mass Transfer Directions, and Liquid Desiccant Types and Concentrations: Experimental and Numerical Data. Journal of Heat Transfer, 2013, 135, .	1.2	12

#	Article	IF	CITATIONS
91	Experimental Effectiveness Investigation of Liquid-to-air Membrane Energy Exchangers under Low Heat Capacity Rates Conditions. Experimental Heat Transfer, 2016, 29, 445-455.	2.3	12
92	Detection of crystallization fouling in a liquid-to-air membrane energy exchanger. Experimental Thermal and Fluid Science, 2018, 92, 33-45.	1.5	12
93	Water Vapor Adsorption–Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels. ACS Omega, 2019, 4, 14378-14389.	1.6	12
94	Thermal performance and hysteresis in fibrous insulation exposed to moisture and step changes in the cold temperature boundary condition. Energy and Buildings, 1994, 21, 251-257.	3.1	11
95	Study of Dehumidification and Regeneration in a Starch Coated Energy Wheel. ACS Sustainable Chemistry and Engineering, 2017, 5, 221-231.	3.2	11
96	A methodology for scaling a small-scale energy exchanger performance results to a full-scale energy exchanger. International Journal of Heat and Mass Transfer, 2015, 82, 555-567.	2.5	10
97	Dehumidification performance investigation of run-around membrane energy exchanger system. Thermal Science, 2016, 20, 1927-1938.	0.5	10
98	Transient Humidity Measurements: Part II—Determination of the Characteristics of an Interactive Device. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 1080-1086.	2.4	9
99	Investigating similarity between a small-scale liquid-to-air membrane energy exchanger (LAMEE) and a full-scale (100 L/s) LAMEE: Experimental and numerical results. International Journal of Heat and Mass Transfer, 2014, 77, 464-474.	2.5	9
100	Effects of Physical and Sorption Properties of Desiccant Coating on Performance of Energy Wheels. Journal of Heat Transfer, 2017, 139, .	1.2	9
101	Starch Particles, Energy Harvesting, and the "Goldilocks Effect― ACS Omega, 2018, 3, 3796-3803.	1.6	9
102	3D computational fluid dynamics simulation of a 3-fluid liquid-to-air membrane energy exchanger (LAMEE). Applied Thermal Engineering, 2019, 153, 501-512.	3.0	9
103	Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture. Energy, 2022, 253, 124076.	4.5	9
104	Optimal design, sizing and operation of heat-pump liquid desiccant air conditioning systems. Science and Technology for the Built Environment, 2020, 26, 161-176.	0.8	8
105	A transient numerical model for sensible fixed-bed regenerator in HVAC applications. International Journal of Heat and Mass Transfer, 2021, 177, 121550.	2.5	8
106	Tests of a Novel Ceiling Panel for Maintaining Space Relative Humidity by Moisture Transfer from an Aqueous Salt Solution. Journal of ASTM International, 2009, 6, 102034.	0.2	8
107	Application of indirect non-invasive methods to detect the onset of crystallization fouling in a liquid-to-air membrane energy exchanger. International Journal of Heat and Mass Transfer, 2018, 127, 663-673.	2.5	7
108	Fixed Bed Regenerators for HVAC Applications. Proceedings (mdpi), 2019, 23, 4.	0.2	7

#	Article	IF	CITATIONS
109	A New Approach to Delay or Prevent Frost Formation in Membranes. Journal of Heat Transfer, 2019, 141,	1.2	7
110	An analytical model for predicting frosting limit in membranes. International Journal of Refrigeration, 2019, 99, 316-326.	1.8	7
111	Transient sensor errors and their impact on fixed-bed regenerator (FBR) testing standards. Science and Technology for the Built Environment, 2021, 27, 656-678.	0.8	7
112	Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer, 2021, 122, 105160.	2.9	7
113	The mechanisms of frost formation on a semipermeable membrane. International Journal of Heat and Mass Transfer, 2022, 182, 121912.	2.5	7
114	Run-Around Energy Recovery System for Air-to-Air Applications Using Cross-Flow Exchangers Coupled with a Porous Solid Desiccant—Part I: Model Development and Verification. HVAC and R Research, 2009, 15, 537-559.	0.9	6
115	Experimental Pressure Drop and Heat Transfer in a Rectangular Channel With a Sinusoidal Porous Screen. Journal of Heat Transfer, 2015, 137, .	1.2	6
116	Effects of Heat Loss/Gain on the Transient Testing of Heat Wheels. Journal of Thermal Science and Engineering Applications, 2016, 8, .	0.8	6
117	Evaluation of the frost properties on a semipermeable membrane. International Journal of Heat and Mass Transfer, 2019, 133, 435-444.	2.5	6
118	Vapor Adsorption Transient Test Facility for Dehumidification and Desorption Studies. International Journal of Technology, 2018, 9, 1092.	0.4	6
119	Steady-State Performance of a Prototype (200 cfm) Liquid-to-Air Membrane Energy Exchanger (LAMEE) Under Summer and Winter Test Conditions. , 2013, , .		5
120	Measurement of Heat Transfer Enhancement and Pressure Drop Across Eddy Promoter Air Screens in a Liquid-to-Air-Membrane Energy Exchanger (LAMEE). , 2013, , .		5
121	Extension of the Concepts of Heat Capacity Rate Ratio and Effectiveness-Number of Transfer Units Model to the Coupled Heat and Moisture Exchange in Liquid-to-Air Membrane Energy Exchangers. Journal of Heat Transfer, 2016, 138, .	1.2	5
122	Effectiveness of Fixed-Bed Regenerators for Energy Recovery in Buildings Applications. E3S Web of Conferences, 2020, 172, 09001.	0.2	5
123	Flax Biomass Conversion via Controlled Oxidation: Facile Tuning of Physicochemical Properties. Bioengineering, 2020, 7, 38.	1.6	5
124	COP Evaluation for a Membrane Liquid Desiccant Air Conditioning System Using Four Different Heating Equipment. , 0, , .		5
125	Performance Definitions for Three-Fluid Heat and Moisture Exchangers. Journal of Heat Transfer, 2017, 139, .	1.2	4
126	Experimental methods to determine the performance of desiccant coated fixed-bed regenerators (FBRs) International Journal of Heat and Mass Transfer, 2022, 182, 121909	2.5	4

#	Article	IF	CITATIONS
127	Convective Mass Transfer Coefficients for Gypsum and Wood Paneling. Journal of ASTM International, 2009, 6, 1-18.	0.2	4
128	Vapour and Solution Uptake Properties of Starch and Cellulose Biopolymers. Journal of Geoscience and Environment Protection, 2018, 06, 101-117.	0.2	4
129	Methodologies for Predicting the Effectiveness of Full-Scale Fixed-Bed Regenerators From Small-Scale Test Data. Journal of Thermal Science and Engineering Applications, 2021, 13, .	0.8	3
130	Heat and Energy Wheels. , 2007, , 794-800.		2
131	Run-Around Energy Recovery System for Air-to-Air Applications Using Cross-Flow Exchangers Coupled with a Porous Solid Desiccant—Part II: Results and Performance Sensitivity. HVAC and R Research, 2009, 15, 561-582.	0.9	2
132	CFD Modelling With Buoyancy Effects for a Heat and Moisture Transfer Ceiling Panel. , 2011, , .		2
133	Calibration of indirect methods to detect the onset of fouling in a liquid-to-air membrane energy exchanger. International Journal of Heat and Mass Transfer, 2020, 151, 118885.	2.5	2
134	Performance Improvement of Membrane Energy Exchanger Using Ultrasound for Heating, Ventilation, and Air Conditioning Application. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	2
135	A model for predicting the effect of crystallization fouling on moisture transfer in membrane energy exchangers. International Journal of Heat and Mass Transfer, 2022, 191, 122844.	2.5	2
136	Surface Patterning of Stainless Steel in Prevention of Fouling in Heat Transfer Equipment. Materials Science Forum, 0, 762, 493-500.	0.3	1
137	Thermo-Economic Performance of a Cogeneration Medium–Small Modular Nuclear Reactor Plant in Canada. Journal of Nuclear Engineering and Radiation Science, 2017, 3, .	0.2	1
138	Influence of Plate Geometry on Thermohydraulic Performance of Fixed-Bed Regenerators. Journal of Fluid Flow, Heat and Mass Transfer, 0, , .	0.0	1
139	Suitability of bio-desiccants for energy wheels in HVAC applications. Building and Environment, 2021, 206, 108369.	3.0	1
140	Energy Exchangers: Run-Around Membrane. , 2014, , 630-636.		1
141	TRANSIENT OPERATION OF SENSIBLE FIXED-BED REGENERATORS. Journal of Thermal Science and Engineering Applications, 0, , 1-16.	0.8	1
142	A transient numerical model for desiccant-coated fixed-bed regenerators and compensation for transient sensor errors. Science and Technology for the Built Environment, 0, , 1-21.	0.8	1
143	Design and Performance Evaluation of a Heat Exchanger Network for a Cogeneration DMS to Various Thermal Utilization Applications. Journal of Nuclear Engineering and Radiation Science, 2016, 2, .	0.2	0
144	The Effect of Transient Characteristics on Optimization of Fixed-Bed Regenerators. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	0

#	Article	IF	CITATIONS
145	Heat and Moisture Transfer Panels. , 2014, , 817-821.		0
146	Heat and Energy Wheels. , 2014, , 810-816.		0
147	ICONE23-2109 DESIGN AND PERFORMANCE EVALUATION OF A HEAT EXCHANGER NETWORK FOR A CO-GENERATION SMR TO VARIOUS THERMAL UTILIZATION APPLICATIONS. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-2ICONE23-2.	0.0	0