Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775417/publications.pdf Version: 2024-02-01

CANC WANC

#	Article	IF	CITATIONS
1	An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy, 2020, 68, 104383.	8.2	26
2	Highly Efficient Sn–Pb Perovskite Solar Cell and Highâ€Performance Allâ€Perovskite Fourâ€Terminal Tandem Solar Cell. Solar Rrl, 2020, 4, 1900396.	3.1	30
3	Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High-Performance Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 196-203.	7.3	64
4	Perovskite solar cells fabricated under ambient air at room temperature without any post-treatment. Organic Electronics, 2020, 86, 105918.	1.4	13
5	Effect of guanidinium chloride in eliminating O ₂ ^{â^'} electron extraction barrier on a SnO ₂ surface to enhance the efficiency of perovskite solar cells. RSC Advances, 2020, 10, 19513-19520.	1.7	14
6	Evolution map of the memristor: from pure capacitive state to resistive switching state. Nanoscale, 2019, 11, 17222-17229.	2.8	45
7	High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Applied Materials & Interfaces, 2019, 11, 22021-22027.	4.0	80
8	Nuclei position-control and crystal growth-guidance on frozen substrates for high-performance perovskite solar cells. Nanoscale, 2019, 11, 12108-12115.	2.8	10
9	Energy Level Bending of Organicâ€Inorganic Halide Perovskite by Interfacial Dipole. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900103.	1.2	12
10	Photoinduced triboelectric polarity reversal and enhancement of a new metal/semiconductor triboelectric nanogenerator. Nano Energy, 2019, 58, 331-337.	8.2	39
11	High performance planar p-i-n perovskite solar cells based on a thin Alq ₃ cathode buffer layer. RSC Advances, 2018, 8, 15961-15966.	1.7	16
12	Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61BM. Organic Electronics, 2018, 59, 260-265.	1.4	14
13	Pentacene as a hole transport material for high performance planar perovskite solar cells. Current Applied Physics, 2018, 18, 1095-1100.	1.1	13
14	Crystallization process of perovskite modified by adding lead acetate in precursor solution for better morphology and higher device efficiency. Organic Electronics, 2017, 43, 189-195.	1.4	14
15	Impact of additive residue on the photodegradation of high performance polymer solar cells. Organic Electronics, 2017, 49, 226-233.	1.4	9
16	The interface degradation of planar organic–inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances, 2017, 7, 42973-42978.	1.7	12
17	Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Advances, 2016, 6, 43299-43303.	1.7	52
18	<i>m</i> â€Methoxy Substituents in a Tetraphenylethyleneâ€Based Holeâ€Transport Material for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2016, 22, 16636-16641.	1.7	33

GANG WANG

#	Article	IF	CITATIONS
19	Impact of alkyl chain length of 1,n-diiodoalkanes on PC71BM distribution in both bulk and air surface of PTB7:PC71BM film. Organic Electronics, 2016, 37, 358-365.	1.4	9
20	The effect of an external electric field on thermally-deposited thin CdS/CdTe-based solar cells. International Journal of Modern Physics B, 2015, 29, 1550238.	1.0	0
21	PEIE capped ZnO as cathode buffer layer with enhanced charge transfer ability for high efficiency polymer solar cells. Synthetic Metals, 2015, 203, 243-248.	2.1	31
22	Evidences of photocurrent generation by hole–exciton interaction at organic semiconductor interfaces. Organic Electronics, 2015, 26, 75-80.	1.4	3
23	High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers. Physical Chemistry Chemical Physics, 2014, 16, 23792-23799.	1.3	56