Chun-Pei Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775351/publications.pdf

Version: 2024-02-01

759055 794469 20 335 12 19 h-index citations g-index papers 20 20 20 572 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced photocatalytic characteristics by Ag-sensitized TiO2 photocatalysts with mixed phases. Materials Chemistry and Physics, 2019, 223, 683-693.	2.0	21
2	High Efficiency for Hydrogen Evolution and Bacterial Inactivation of Agâ€TiO ₂ â€Graphene Ternary Nanocomposites with Appropriate Ag Ratios. ChemistrySelect, 2018, 3, 354-362.	0.7	6
3	Mixed-Phase MnO2/N-Containing Graphene Composites Applied as Electrode Active Materials for Flexible Asymmetric Solid-State Supercapacitors. Nanomaterials, 2018, 8, 924.	1.9	12
4	Ag3PO4-TiO2-Graphene Oxide Ternary Composites with Efficient Photodegradation, Hydrogen Evolution, and Antibacterial Properties. Catalysts, 2018, 8, 57.	1.6	40
5	Investigation of the appropriate content of graphene in Ag TiO2-graphene ternary nanocomposites applied as photocatalysts. International Journal of Hydrogen Energy, 2017, 42, 17020-17029.	3.8	18
6	Application of TiO2-graphene nanocomposites to photoanode of dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 1-9.	2.0	40
7	Modified photoanodes by amino-containing phosphonate self-assembled monolayers to improve the efficiency of dye-sensitized solar cells. RSC Advances, 2016, 6, 49702-49707.	1.7	1
8	Exploration of silver decoration concentration to enhance photocatalytic efficiency of titanium dioxide photocatalysts. Solid State Sciences, 2016, 62, 112-120.	1.5	11
9	Improved performance of dye-sensitized solar cells with patterned fluorine-doped tin oxide electrodes. Energy, 2015, 89, 277-282.	4.5	17
10	Performance improvement of dye-sensitized solar cells by surface patterning of FTO electrodes. , 2014, , .		0
11	Impacts of sputter-deposited platinum thickness on the performance of dye-sensitized solar cells. Electrochimica Acta, 2013, 107, 488-493.	2.6	25
12	Molecular modification on dye-sensitized solar cells by phosphonate self-assembled monolayers. Journal of Materials Chemistry, 2012, 22, 2915-2921.	6.7	24
13	On the dendritic growth and field emission of amorphous AlQ3 nanowires. Organic Electronics, 2010, 11, 115-122.	1.4	20
14	Structural transformation and crystallization of amorphous copper phthalocyanine nanostructures. Thin Solid Films, 2010, 518, 6720-6728.	0.8	11
15	Crystalline Gaq3Nanostructures: Preparation, Thermal Property and Spectroscopy Characterization. Nanoscale Research Letters, 2009, 4, 820-827.	3.1	14
16	One-Dimensional Organic and Organometallic Nanostructured Materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 69-87.	0.9	20
17	Field emission of Alq3nanoprotrusions. Nanotechnology, 2007, 18, 125202.	1.3	6
18	Tuning of Metal Work Function with Organic Carboxylates and Its Application in Top-Emitting Electroluminescent Devices. Langmuir, 2007, 23, 7090-7095.	1.6	11

Сним-Рег Сно

#	Article	IF	CITATIONS
19	Growth of AlQ3nanowires directly from amorphous thin film and nanoparticles. Nanotechnology, 2006, 17, 5506-5510.	1.3	30
20	Decreased phase transition temperatures of Alq3nanoparticles. Nanotechnology, 2006, 17, 3756-3760.	1.3	8