Christopher Mark Fanning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8775333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RÃo de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 2007, 83, 49-82.	9.1	357
2	Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Bulletin of the Geological Society of America, 2006, 118, 39-64.	3.3	347
3	Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 2006, 76, 235-257.	9.1	342
4	Continuation of the Mozambique Belt Into East Antarctica: Grenvilleâ€Age Metamorphism and Polyphase Panâ€African Highâ€Grade Events in Central Dronning Maud Land. Journal of Geology, 1998, 106, 385-406.	1.4	334
5	Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology, 1998, 26, 243.	4.4	275
6	Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes. Precambrian Research, 2013, 227, 55-76.	2.7	273
7	Two Carboniferous Ages <subtitle>A Comparison of Shrimp Zircon Dating with Conventional Zircon Ages and ⁴⁰Ar/³⁹Ar <italic />Analysis</italic </subtitle> . , 1995, , .		259
8	Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?. Geology, 2001, 29, 463.	4.4	248
9	The South Patagonian batholith: 150Âmy of granite magmatism on a plate margin. Lithos, 2007, 97, 373-394.	1.4	247
10	The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains. Precambrian Research, 2013, 227, 4-28.	2.7	237
11	Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Bulletin of the Geological Society of America, 2010, 122, 1660-1670.	3.3	232
12	Archean granite-greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics, 2002, 21, 7-1-7-17.	2.8	197
13	Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology. Precambrian Research, 1988, 40-41, 363-386.	2.7	192
14	U–Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology, 2002, 188, 125-147.	3.3	190
15	Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 2006. 44. 413-427.	2.0	187
16	Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England. Numerische Mathematik, 2007, 307, 63-118.	1.4	185
17	The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: Their origins and incorporation into south-west Gondwana. Gondwana Research, 2011, 20, 673-690.	6.0	179
18	Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica: evidence for a single protracted orogenic event. Precambrian Research, 2000, 104, 1-24	2.7	172

#	Article	IF	CITATIONS
19	Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia. Economic Geology, 2007, 102, 1441-1470.	3.8	172
20	U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 2004, 32, 881.	4.4	167
21	A Positive Test of East Antarctica–Laurentia Juxtaposition Within the Rodinia Supercontinent. Science, 2008, 321, 235-240.	12.6	167
22	SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Bulletin of the Geological Society of America, 2003, 115, 349-372.	3.3	166
23	Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 2005, 33, 129.	4.4	163
24	The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. Geological Society Special Publication, 1998, 142, 181-217.	1.3	159
25	Duration of a Large Mafic Intrusion and Heat Transfer in the Lower Crust: a SHRIMP U-Pb Zircon Study in the Ivrea-Verbano Zone (Western Alps, Italy). Journal of Petrology, 2007, 48, 1185-1218.	2.8	158
26	The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions To Mineralogy and Petrology, 2006, 151, 751-768.	3.1	157
27	A two-stage evolution of the Neoproterozoic Rayner Structural Episode: new U–Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Research, 2002, 116, 307-330.	2.7	154
28	50 Myr recovery from the largest negativel̂′13C excursion in the Ediacaran ocean. Terra Nova, 2006, 18, 147-153.	2.1	148
29	SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: evidence for rapid deposition of sedimentary strata. Canadian Journal of Earth Sciences, 2000, 37, 1287-1300.	1.3	142
30	Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith. Tectonophysics, 2001, 342, 313-350.	2.2	141
31	Stratigraphic correlation of Cambrian–Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region. Bulletin of the Geological Society of America, 2009, 121, 323-332.	3.3	141
32	The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. Geological Society Special Publication, 1998, 142, 343-367.	1.3	136
33	Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Research, 2003, 126, 27-53.	2.7	135
34	Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences, 2003, 16, 107-123.	1.4	131
35	Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos, 2007, 95, 177-207.	1.4	130
36	Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 233-251.	2.3	124

#	Article	IF	CITATIONS
37	Chronological study of the pre-Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences, 2003, 16, 27-44.	1.4	121
38	Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 2005, 182, 3-28.	2.1	119
39	Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth and Planetary Science Letters, 2011, 312, 164-175.	4.4	118
40	Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes. Journal of the Geological Society, 2007, 164, 1011-1022.	2.1	117
41	Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 2016, 32, 193-212.	6.0	117
42	Geochronology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contemporaneous with extension. Bulletin of the Geological Society of America, 1997, 109, 379-394.	3.3	116
43	The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U–Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology, 2004, 207, 171-188.	3.3	115
44	Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode. Sedimentary Geology, 2005, 182, 101-142.	2.1	114
45	Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite (Anti-Atlas, Morocco). Precambrian Research, 2010, 182, 1-14.	2.7	114
46	Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondwana Research, 2013, 23, 1122-1135.	6.0	114
47	U–Pb evidence of â^¼1.7 Ga crustal tectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions. Precambrian Research, 2001, 112, 261-288.	2.7	109
48	Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implications. Precambrian Research, 2005, 141, 106-136.	2.7	109
49	Timing of Grenville-age vs. Pan-African medium- to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Research, 2003, 125, 1-20.	2.7	108
50	Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology, 2001, 29, 703.	4.4	104
51	Forearc-basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geology, 2001, 29, 491.	4.4	103
52	Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, 2002, 159, 145-157.	2.1	103
53	Crustal evolution and terrane correlation in the eastern Arabian Shield, Yemen: geochronological constraints. Journal of the Geological Society, 1998, 155, 281-295.	2.1	101
54	Zircon Trace Element and O–Hf Isotope Analyses of Mineralized Intrusions from El Teniente Ore Deposit, Chilean Andes: Constraints on the Source and Magmatic Evolution of Porphyry Cu–Mo Related Magmas. Journal of Petrology, 2012, 53, 1091-1122.	2.8	97

#	Article	IF	CITATIONS
55	The Terre Adélie basement in the East-Antarctica Shield: geological and isotopic evidence for a major 1.7Ga thermal event; comparison with the Gawler Craton in South Australia. Precambrian Research, 1999, 94, 205-224.	2.7	95
56	Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. American Mineralogist, 2005, 90, 607-618.	1.9	95
57	Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics, 2010, 29, .	2.8	94
58	Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. Journal of the Geological Society, 2003, 160, 613-628.	2.1	93
59	A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Reviews, 2018, 187, 259-285.	9.1	92
60	U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bulletin - Societie Geologique De France, 2005, 176, 269-282.	2.2	91
61	3.5 Ga old terranes in the West African Craton, Mauritania. Journal of the Geological Society, 1996, 153, 507-510.	2.1	90
62	Models of corundum origin from alkali basaltic terrains: a reappraisal. Contributions To Mineralogy and Petrology, 1998, 133, 356-372.	3.1	89
63	The Western Sierras Pampeanas: Protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 2010, 29, 105-127.	1.4	89
64	Archean crustal evolution of the West African Craton: example of the Amsaga Area (Reguibat Rise). Uî—,Pb and Smî—,Nd evidence for crustal growth and recycling. Precambrian Research, 1998, 90, 107-117.	2.7	88
65	Cryogenian (â^1⁄4830Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magmatic link between Sri Lanka and Madagascar?. Journal of Asian Earth Sciences, 2011, 42, 223-233.	2.3	88
66	Some isotopic constraints on the evolution of the granulite and upper amphibolite facies terranes in the eastern Musgrave Block, central Australia. Precambrian Research, 1995, 71, 155-181.	2.7	87
67	Determining the cooling history of in situ lower oceanic crust—Atlantis Bank, SW Indian Ridge. Earth and Planetary Science Letters, 2004, 222, 145-160.	4.4	87
68	Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedimentary Geology, 2000, 137, 147-185.	2.1	86
69	Comparative use of TIMS and SHRIMP for U–Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). Lithos, 2005, 82, 185-219.	1.4	85
70	U–Pb age data from the Sunsas region of Eastern Bolivia, evidence for the allochthonous origin of the Paragua Block. Precambrian Research, 2005, 139, 121-146.	2.7	83
71	Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: Implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Research, 2011, 19, 482-494.	6.0	83
72	New geologic mapping and SHRIMP U-Pb zircon data in the Peninsular Ranges batholith, Baja California, Mexico: Evidence for a suture?. Geology, 1999, 27, 743.	4.4	82

#	Article	IF	CITATIONS
73	Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Bulletin of the Geological Society of America, 2007, 119, 275-288.	3.3	81
74	Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: a revision of greenstone stratigraphy and a model for crustal growth. Geological Society Special Publication, 1995, 95, 109-126.	1.3	80
75	Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, 2006, 163, 983-995.	2.1	80
76	Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: implications for the tectonic history of the East Gondwana continental margin. Journal of the Geological Society, 2007, 164, 215-225.	2.1	80
77	Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Geological Society Special Publication, 2008, 308, 21-67.	1.3	80
78	Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa?. Earth-Science Reviews, 2018, 177, 209-225.	9.1	79
79	Pan-African intraplate deformation in the northern Prince Charles Mountains, east Antarctica. Earth and Planetary Science Letters, 2002, 195, 195-210.	4.4	78
80	Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system. Geology, 2004, 32, 57.	4.4	78
81	Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia. Bulletin of the Geological Society of America, 2010, 122, 1686-1699.	3.3	78
82	Stratigraphic record of basin development within the San Andreas fault system: Late Cenozoic Fish Creek-Vallecito basin, southern California. Bulletin of the Geological Society of America, 2011, 123, 771-793.	3.3	78
83	U–Pb zircon (SHRIMP) ages for the Lebombo rhyolites, South Africa: refining the duration of Karoo volcanism. Journal of the Geological Society, 2004, 161, 547-550.	2.1	76
84	Origin of the Early-Middle Devonian magmatism in the Sakarya Zone, NW Turkey: Geochronology, geochemistry and isotope systematics. Journal of Asian Earth Sciences, 2012, 45, 201-222.	2.3	75
85	Temporal, Isotopic and Spatial Relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. Journal of Petrology, 2012, 53, 2027-2065.	2.8	74
86	Archean evolution of the Leo Rise and its Eburnean reworking. Journal of African Earth Sciences, 2004, 39, 97-104.	2.0	73
87	Paleogeographic implications of non–North American sediment in the Mesoproterozoic upper Belt Supergroup and Lemhi Group, Idaho and Montana, USA. Geology, 2010, 38, 927-930.	4.4	72
88	Proterozoicâ€Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacificâ€Gondwana signatures. Australian Journal of Earth Sciences, 2001, 48, 857-866.	1.0	71
89	Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources. Bulletin of the Geological Society of America, 2008, 120, 1362-1377.	3.3	70
90	Continuation of the Laurentian Grenville Province across the Ross Sea Margin of East Antarctica. Journal of Geology, 2010, 118, 601-619.	1.4	70

#	Article	IF	CITATIONS
91	Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas, NW Argentina: A record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Research, 2012, 22, 992-1008.	6.0	70
92	SHRIMP U–Pb Zircon Triassic Intrusion Age of the Finero Mafic Complex (Ivrea–Verbano Zone, Western) Tj I	ETQ <u>9</u> 800	rgBT /Overloc
93	Ordovician magmatism, deformation, and exhumation in the Caledonides of central Norway: An orphan of the Taconic orogeny?. Geology, 2002, 30, 883.	4.4	68
94	Archean zircons in Cretaceous strata of the western Canadian Cordillera: The "Baja B.C.―hypothesis fails a "crucial test― Geology, 1999, 27, 195.	4.4	67

95	Title is missing!. Bulletin of the Geological Society of America, 1999, 111, 1876.	3.3	67
----	--	-----	----

New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 1.8 67 Earth Sciences, 2003, 92, 301-315.

97	Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern Fold Belt, Mount Isa Inlier. Precambrian Research, 2008, 163, 81-107.	2.7	67
98	Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Bulletin of the Geological Society of America, 2010, 122, 1135-1159.	3.3	67
99	Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): Implications for the breakup of Gondwana. Gondwana Research, 2012, 21, 1019-1036.	6.0	67
100	Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°–31°S): SHRIMP U–Pb zircon ages and Lu–Hf and O isotope systematics. Lithos, 2014, 184-187, 436-446.	1.4	67
101	U–Pb dating of stockwork zircons from the eastern Iberian Pyrite Belt. Journal of the Geological Society, 1999, 156, 7-10.	2.1	66
102	U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): Correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Research, 2006, 9, 524-529.	6.0	65
103	New 40Ar-39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits formations on the Kaiparowits Plateau, Utah: implications for regional correlation, provenance, and biostratigraphy. Cretaceous Research, 2009, 30, 287-299.	1.4	65
104	New constraints from U–Pb, Lu–Hf and Sm–Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Research, 2012, 206-207, 87-108.	2.7	64
105	Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: Evidence for multiple sources along the Gondwana plate margin. Gondwana Research, 2008, 13, 259-274.	6.0	62
106	Petrology, geochemistry and U–Pb geochronology of the Betic Ophiolites: Inferences for Pangaea break-up and birth of the westernmost Tethys Ocean. Lithos, 2011, 124, 255-272.	1.4	62
107	Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation. Chemical Geology, 2015, 398, 70-84.	3.3	62
108	The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 2008, 13, 163-175.	6.0	61

#	Article	IF	CITATIONS
109	Paleocene-Eocene migmatite crystallization, extension, and exhumation in the hinterland of the northern Cordillera: Okanogan dome, Washington, USA. Bulletin of the Geological Society of America, 2008, 120, 912-929.	3.3	61
110	A mid-Cretaceous age for the Palmer Land event, Antarctic Peninsula: implications for terrane accretion timing and Gondwana palaeolatitudes. Journal of the Geological Society, 2002, 159, 113-116.	2.1	60
111	The Sierra Norte-Ambargasta batholith: Late Ediacaran–Early Cambrian magmatism associated with Pampean transpressional tectonics. Journal of South American Earth Sciences, 2013, 42, 127-143.	1.4	60
112	U-Pb and Re-Os Geochronologic Evidence for Two Alkalic Porphyry Ore-Forming Events in the Cadia District, New South Wales, Australia. Economic Geology, 2007, 102, 3-26.	3.8	59
113	Cambrian rocks and faunas of the Wachi La, Black Mountains, Bhutan. Geological Magazine, 2011, 148, 351-379.	1.5	59
114	Jurassic ophiolites within the Valais domain of the Western and Central Alps: geochronological evidence for re-rifting of oceanic crust. Contributions To Mineralogy and Petrology, 2005, 149, 446-461.	3.1	58
115	Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: Using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot. Bulletin of the Geological Society of America, 2006, 118, 1027-1050.	3.3	58
116	Hybridization of granitic magmas in the source: The origin of the Karakoram Batholith, Ladakh, NW India. Lithos, 2010, 116, 249-272.	1.4	58
117	Archean gold mineralization synchronous with the final stages of cratonization, Yilgarn Craton, Western Australia. Geology, 1996, 24, 879.	4.4	57
118	2.5 b.y. of punctuated Earth history as recorded in a single rock. Geology, 1999, 27, 1007.	4.4	57
119	Variscan to eo-Alpine events recorded in European lower-crust zircons sampled from the French Massif Central and Corsica, France. Lithos, 2006, 87, 235-260.	1.4	57
120	The Arequipa Massif of Peru: New SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. Journal of South American Earth Sciences, 2010, 29, 128-142.	1.4	57
121	Structure, emplacement and lateral expansion of the San José tonalite pluton, Peninsular Ranges batholith, Baja California, México. Journal of Structural Geology, 2003, 25, 1933-1957.	2.3	55
122	Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Research, 2013, 23, 988-997.	6.0	55
123	A Crustal Progenitor for the Intrusive AnorthositeCharnockite Kindred of the Cupriferous Koperberg Suite, O'okiep District, Namaqualand, South Africa; New Isotope Data for the Country Rocks and the Intrusives. Journal of Petrology, 1995, 36, 231-258.	2.8	54
124	1.60 Ga felsic volcanic blocks in the moraines of the Terre Adélie Craton, Antarctica: Comparisons with the Gawler Range Volcanics, South Australia. Australian Journal of Earth Sciences, 2002, 49, 831-845.	1.0	54
125	Crustal growth during back-arc closure: Cretaceous exhumation history of Cordillera Darwin, southern Patagonia. Journal of Metamorphic Geology, 2011, 29, 649-672.	3.4	54
126	Evidence for a "Cadomian―ophiolite and magmatic-arc complex in SW Bulgaria. Precambrian Research, 2012, 212-213, 275-295.	2.7	54

#	Article	IF	CITATIONS
127	A 3.5 Ga granite–gneiss basement in Guinea: further evidence for early archean accretion within the West African Craton. Precambrian Research, 2001, 108, 179-194.	2.7	53
128	K-bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc. Journal of the Geological Society, 2004, 161, 747-756.	2.1	53
129	Carboniferous to Lower Permian stratigraphy of the southern Tamworth Belt, southern New England Orogen, Australia: Boundary sequences of the Werrie and Rouchel blocks. Australian Journal of Earth Sciences, 2006, 53, 249-284.	1.0	53
130	Geochronology of the Proterozoic basement of southwesternmost North America, and the origin and evolution of the Mojave crustal province. Tectonics, 2000, 19, 616-629.	2.8	51
131	An Archaean province in the southern Prince Charles Mountains, East Antarctica: U–Pb zircon evidence for c. 3170Ma granite plutonism and c. 2780Ma partial melting and orogenesis. Precambrian Research, 2006, 145, 207-228.	2.7	51
132	Shoshonitic magmatism and the formation of the Northparkes porphyry Cu–ÂAu deposits, New South Wales. Australian Journal of Earth Sciences, 2007, 54, 417-444.	1.0	51
133	First U–Pb SHRIMP age of the Hauterivian stage, Neuquén Basin, Argentina. Journal of South American Earth Sciences, 2008, 26, 91-99.	1.4	51
134	Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT-HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 2007, 20, 159-175.	2.2	50
135	Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia. Precambrian Research, 2017, 299, 151-176.	2.7	50
136	Depositional history, tectonics, and provenance of the Cambrian-Ordovician boundary interval in the western margin of the North China block. Bulletin of the Geological Society of America, 2015, 127, 1174-1193.	3.3	49
137	Mesoarchean and Paleoproterozoic history of the Nimrod Complex, central Transantarctic Mountains, Antarctica: Stratigraphic revisions and relation to the Mawson Continent in East Gondwana. Precambrian Research, 2016, 285, 242-271.	2.7	49
138	The youngest basic oceanic magmatism in the Alps (Late Cretaceous ; Chiavenna unit, Central Alps): geochronological constraints and geodynamic significance. Contributions To Mineralogy and Petrology, 2003, 146, 144-158.	3.1	48
139	Late Paleozoic–Early Triassic magmatism on the western margin of Gondwana: Collahuasi area, Northern Chile. Gondwana Research, 2008, 13, 407-427.	6.0	48
140	Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland. International Journal of Earth Sciences, 2010, 99, 47-64.	1.8	48
141	Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U–Pb zircon ages. Journal of South American Earth Sciences, 2011, 31, 397-413.	1.4	48
142	The low-grade Canal de las Montañas Shear Zone and its role in the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile. Tectonophysics, 2012, 524-525, 165-185.	2.2	48
143	Age provinces in the Antarctic craton: Evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Research, 2015, 28, 152-164.	6.0	48
144	3.3Ga SHRIMP U–Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil). Journal of South American Earth Sciences, 2002, 15, 363-373.	1.4	47

#	Article	IF	CITATIONS
145	Late Ordovician stratigraphy, zircon provenance and tectonics, Lachlan Fold Belt, southeastern Australia. Australian Journal of Earth Sciences, 2002, 49, 423-436.	1.0	47
146	The San Blas Pluton: An example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 2006, 20, 341-350.	1.4	47
147	Neoproterozoic A-type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break-up along a proto-lapetus rift?. Terra Nova, 2006, 18, 388-394.	2.1	47
148	LA-MC-ICPMS and SHRIMP U–Pb dating of complex zircons from Quaternary tephras from the French Massif Central: Magma residence time and geochemical implications. Geochimica Et Cosmochimica Acta, 2009, 73, 1095-1108.	3.9	47
149	Constraints on the Timing of Co-Cu Au Mineralization in the Blackbird District, Idaho, Using SHRIMP U-Pb Ages of Monazite and Xenotime Plus Zircon Ages of Related Mesoproterozoic Orthogneisses and Metasedimentary Rocks. Economic Geology, 2012, 107, 1143-1175.	3.8	47
150	Paleozoic evolution of western Marie Byrd Land, Antarctica. Bulletin of the Geological Society of America, 2015, 127, 1464-1484.	3.3	47
151	Late Neoproterozoic to Early Palaeozoic palaoegeography of the Holy Cross Mountains (Central) Tj ETQq1 1 0.78	4314 rgBT 2.1	- Overlock 46
152	Are the Taitao granites formed due to subduction of the Chile ridge?. Lithos, 2009, 113, 246-258.	1.4	46
153	Paleozoic tectonism on the East Gondwana margin: Evidence from SHRIMP U–Pb zircon geochronology of a migmatite–granite complex in West Antarctica. Tectonophysics, 2009, 477, 262-277.	2.2	46
154	Detrital zircon SHRIMP U–Pb age study of the Cordillera Darwin Metamorphic Complex of Tierra del Fuego: sedimentary sources and implications for the evolution of the Pacific margin of Gondwana. Journal of the Geological Society, 2010, 167, 555-568.	2.1	46
155	Detrital-Zircon Populations and Provenance of Mesoproterozoic Strata of East-Central Idaho, U.S.A.: Correlation with Belt Supergroup of Southwest Montana. , 2007, , 101-128.		46
156	Gemâ€bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K–Ar ages and zircon fission track and U–Pb isotope dating. Australian Journal of Earth Sciences, 2001, 48, 221-237.	1.0	45
157	Grenvillian massif-type anorthosites in the Sierras Pampeanas. Journal of the Geological Society, 2005, 162, 9-12.	2.1	45
158	Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. Journal of the Geological Society, 2009, 166, 797-810.	2.1	44
159	Crustal evolution between 2.0 and 3.5ÂGa in the southern Gavião block (Umburanas-Brumado-Aracatu) Tj ETQq American Earth Sciences, 2012, 40, 129-142.	1 1 0.7843 1.4	314 rgBT /C 44
160	Detrital zircon record of mid-Paleozoic convergent margin activity in the northern U.S. Rocky Mountains: Implications for the Antler orogeny and early evolution of the North American Cordillera. Lithosphere, 2016, 8, 533-550.	1.4	44
161	Characterisation and tracing of Permian magmatism in the south-western segment of the Gondwanan margin; U–Pb age, Lu–Hf and O isotopic compositions of detrital zircons from metasedimentary complexes of northern Antarctic Peninsula and western Patagonia. Gondwana Research, 2016, 36, 1-13.	6.0	43
	The Permo Tripssic Conductor sequence, central Transportanctic Mountains, Antarctica: Zircon		

¹⁶² The Permo-Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. , 2017, 13, 155-178.

43

#	Article	IF	CITATIONS
163	Occurrence and significance of blueschist in the southern Lachlan Orogen. Australian Journal of Earth Sciences, 2002, 49, 255-269.	1.0	42
164	The timing of mantle and crustal events in South Namibia, as defined by SHRIMP-dating of zircon domains from a garnet peridotite xenolith of the Gibeon Kimberlite Province. Journal of African Earth Sciences, 2004, 39, 147-157.	2.0	42
165	SHRIMP dating of zircons in eclogite from the Variscan basement in north-eastern Sardinia (Italy). Neues Jahrbuch Für Mineralogie, Monatshefte, 2004, 2004, 275-288.	0.3	42
166	Pre- to synglacial rift-related volcanism in the Neoproterozoic (Cryogenian) Pocatello Formation, SE Idaho: New SHRIMP and CA-ID-TIMS constraints. Lithosphere, 2013, 5, 128-150.	1.4	41
167	Timing relationships and structural controls on the location of Au-Cu mineralization at the Boddington gold mine, Western Australia. Economic Geology, 1998, 93, 245-270.	3.8	40
168	Archean geochronological framework of the Bighorn Mountains, Wyoming. Canadian Journal of Earth Sciences, 2006, 43, 1399-1418.	1.3	40
169	Structural and geochronological constraints of early Ross orogenic deformation in the Pensacola Mountains, Antarctica. Bulletin of the Geological Society of America, 2004, 116, 619.	3.3	39
170	Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U–Pb ages, oxygen isotopes and REE data. Lithos, 2007, 94, 168-180.	1.4	39
171	Insights from petrography, mineralogy and U–Pb zircon geochronology into the provenance and reservoir potential of Cenozoic siliciclastic depositional systems supplying the northern margin of the Eastern Black Sea. Marine and Petroleum Geology, 2013, 45, 331-348.	3.3	39
172	Isotopic and geochemical constraints on the age and origin of granitoids from the central Mawson Escarpment, southern Prince Charles Mountains, East Antarctica. Contributions To Mineralogy and Petrology, 2008, 155, 379-400.	3.1	38
173	A deformed alkaline igneous rock–carbonatite complex from the Western Sierras Pampeanas, Argentina: Evidence for late Neoproterozoic opening of the Clymene Ocean?. Precambrian Research, 2008, 165, 205-220.	2.7	38
174	SHRIMP dating of magmatism in the Hitachi metamorphic terrane, Abukuma Belt, Japan: Evidence for a Cambrian volcanic arc. Island Arc, 2011, 20, 259-279.	1.1	38
175	Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana. Geological Magazine, 2012, 149, 626-644.	1.5	38
176	SHRIMP U-Pb Ages of Xenotime and Monazite from the Spar Lake Red Bed-Associated Cu-Ag Deposit, Western Montana: Implications for Ore Genesis. Economic Geology, 2012, 107, 1251-1274.	3.8	38
177	Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U–Pb geochronology. Journal of South American Earth Sciences, 2014, 50, 67-74.	1.4	38
178	The Gondwana Plate margin in the Weddell Sea sector: Zircon geochronology of Upper Paleozoic (mainly Permian) strata from the Ellsworth Mountains and eastern Ellsworth Land, Antarctica. Gondwana Research, 2016, 29, 234-247.	6.0	38
179	Evolution of provenance in the NE Atlantic rift: The Early–Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid-Norway. Marine and Petroleum Geology, 2009, 26, 1100-1117. 	3.3	37
180	U_Pb zircon dating of tectonomagmatic events in the northern Arunta Inlier, central Australia. Precambrian Research, 1995, 71, 45-68.	2.7	36

#	Article	IF	CITATIONS
181	Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia. Lithos, 2000, 54, 33-62.	1.4	36
182	Datation U–Pb des deux faciès du granite de Soultz (Fossé rhénan, France). Comptes Rendus - Geoscience, 2004, 336, 775-787.	1.2	36
183	Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. Tectonics, 2010, 29, n/a-n/a.	2.8	36
184	Lu–Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antarctic Peninsula region. Journal of South American Earth Sciences, 2011, 32, 485-496.	1.4	36
185	Superimposed Neoarchaean and Paleoproterozoic tectonics in the Terre Adélie Craton (East) Tj ETQq1 1 0.78 167, 316-338.	4314 rgBT 2.7	Överlock 10 35
186	Refinement of the time-space evolution of the giant Mio-Pliocene RÃo Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar thermochronology data. Mineralium Deposita, 2013, 48, 57-79.	4.1	35
187	Isotopic constraints on crustal architecture and Permo-Triassic tectonics in New Guinea: possible links with eastern Australia. Australian Journal of Earth Sciences, 2004, 51, 107-124.	1.0	34
188	Zircon O- and Hf-isotope constraints on the genesis and tectonic significance of Permian magmatism in Patagonia. Journal of the Geological Society, 2017, 174, 803-816.	2.1	34
189	Upper Carboniferous to Lower Permian volcanic successions of the Carroll-Nandewar region, northern Tamworth Belt, southern New England Orogen, Australia*. Australian Journal of Earth Sciences, 2004, 51, 205-232.	1.0	33
190	Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sedimentary Geology, 2008, 210, 61-85.	2.1	33
191	Oblique dilation, melt transfer, and gneiss dome emplacement. Geology, 2010, 38, 375-378.	4.4	33
192	Sapphire crystallization, age and origin, Ban Huai Sai, Laos: age based on zircon inclusions. Journal of Asian Earth Sciences, 2002, 20, 841-849.	2.3	32
193	SHRIMP U?Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. International Journal of Earth Sciences, 2003, 92, 701-711.	1.8	32
194	Kinematics and timing of exhumation of metamorphic core complexes along the Lewis and Clark fault zone, northern Rocky Mountains, USA. , 2007, , 207-232.		32
195	Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry. Numerische Mathematik, 2012, 312, 723-765.	1.4	32
196	Pre-Middle Silurian granitic magmatism and associated metamorphism in northern Japan: SHRIMP U-Pb zircon chronology. Geological Journal, 1995, 30, 273-280.	1.3	31
197	Mid- to Late Cambrian docking of the RÃo de la Plata craton to southwestern Gondwana: age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras) Tj ETQq1 1 ().7 & 4314 i	rgB 31/Overlo c
198	Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research, 2012, 22, 664-673.	6.0	31

#	Article	IF	CITATIONS
199	Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf–O perspective from West Antarctica. Geological Society Special Publication, 2013, 383, 169-210.	1.3	31
200	Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust. Bulletin - Societie Geologique De France, 2015, 186, 171-192.	2.2	31
201	The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes. Earth-Science Reviews, 2016, 152, 88-105.	9.1	31
202	Early Jurassic magmatism on the Antarctic Peninsula and potential correlation with the Subcordilleran plutonic belt of Patagonia. Journal of the Geological Society, 2017, 174, 365-376.	2.1	31
203	Early Cretaceous subduction of continental crust at the Diego de Almagro archipelago, southern Chile. Episodes, 2003, 26, 285-289.	1.2	31
204	Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite. Precambrian Research, 2006, 151, 224-264.	2.7	30
205	Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia. Bulletin of the Geological Society of America, 2013, 125, 1282-1300.	3.3	30
206	SHRIMP U–Pb and REE data pertaining to the origins of xenotime in Belt Supergroup rocks: evidence for ages of deposition, hydrothermal alteration, and metamorphism. Canadian Journal of Earth Sciences, 2015, 52, 722-745.	1.3	29
207	Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope) Tj ETQq1 1 0.7	84314 rgBT 6.0	「/Qyerlock]
208	High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho. Geology, 1999, 27, 295.	4.4	28
209	Geochemistry and age of magmatic rocks in the unexposed Narromine, Cowal and Fairholme Igneous Complexes in the Ordovician Macquarie Arc, New South Wales. Australian Journal of Earth Sciences, 2007, 54, 243-271.	1.0	28
210	Structural history of the Greenvale Province, north Queensland: Early Palaeozoic extension and convergence on the Pacific margin of Gondwana*. Australian Journal of Earth Sciences, 2007, 54, 573-595.	1.0	28
211	U-Pb SHRIMP zircon dating of andesite from the Dolomite area (NE Italy): geochronological evidence for the early onset of Permian Volcanism in the eastern part of the southern Alps. Swiss Journal of Geosciences, 2007, 100, 313-324.	1.2	28
212	Coolwater culmination: Sensitive highâ€resolution ion microprobe (SHRIMP) Uâ€Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho. Tectonics, 2008, 27, .	2.8	28
213	Neoproterozoic glacial dynamics revealed by provenance of diamictites of the Bebedouro Formation, São Francisco Craton, Central Eastern Brazil. Terra Nova, 2009, 21, 375-385.	2.1	28
214	Relationship between volcanism and marine sedimentation in northern Austral (Aisén) Basin, central Patagonia: Stratigraphic, U–Pb SHRIMP and paleontologic evidence. Journal of South American Earth Sciences, 2009, 27, 309-325.	1.4	28
215	GeocronologÃa U-Pb e isótopos de Hf-O en circones del batolito de la Costa Pensilvaniana, Chile Andean Geology, 2014, 41,	0.5	28
216	Stratigraphy and correlation of Carboniferous ignimbrites, Rocky Creek region, Tamworth Belt, Southern New England Orogen, New South Wales*. Australian Journal of Earth Sciences, 2003, 50, 931-954.	1.0	27

#	Article	IF	CITATIONS
217	Insights into Cretaceous–Palaeogene sediment transport paths and basin evolution in the North Atlantic from a heavy mineral study of sandstones from southern East Greenland. Petroleum Geoscience, 2004, 10, 61-72.	1.5	27
218	Structure, detrital zircon U – Pb ages and40Ar/39Ar geochronology of the Early Palaeozoic Girilambone Group, central New South Wales: subduction, contraction and extension associated with the Benambran Orogeny. Australian Journal of Earth Sciences, 2005, 52, 137-159.	1.0	27
219	Jurassic sedimentation of the Miers Bluff Formation, Livingston Island, Antarctica: evidence from SHRIMP U–Pb ages of detrital and plutonic zircons. Antarctic Science, 2006, 18, 229-238.	0.9	27
220	Palaeoclimatic inferences from upper Palaeozoic siltstone of the Earp Formation and equivalents, Arizona-New Mexico (USA). Sedimentology, 2007, 54, 701-719.	3.1	27
221	Palaeomagnetism and the age of the Cracow volcanic rocks (S Poland). Geophysical Journal International, 2008, 174, 475-488.	2.4	27
222	First U–Pb SHRIMP age for the Pilmatué Member (Agrio Formation) of the Neuquén Basin, Argentina: Implications for the Hauterivian lower boundary. Cretaceous Research, 2016, 58, 223-233.	1.4	27
223	Late Triassic detrital zircons in meta-turbidites of the Chonos Metamorphic Complex, southern Chile. Andean Geology, 2001, 28, .	0.5	27
224	Zircon age constraints on sediment provenance in the Caspian region. Journal of the Geological Society, 2006, 163, 647-655.	2.1	26
225	Age and significance of the Platypus Tuff Bed, a regional reference horizon in the Upper Permian Moranbah Coal Measures, north Bowen Basin. Australian Journal of Earth Sciences, 2001, 48, 183-192.	1.0	25
226	Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central. International Journal of Earth Sciences, 2007, 96, 271-287.	1.8	25
227	Petrogenesis of the late-orogenic Bravo granite and surrounding high-grade country rocks in the Palaeoproterozoic orogen of Itabuna-Salvador-Curaçá block, Bahia, Brazil. Precambrian Research, 2008, 167, 35-52.	2.7	25
228	Early Paleozoic development of the Maine-Quebec Boundary Mountains region. Canadian Journal of Earth Sciences, 2006, 43, 367-389.	1.3	23
229	Mesoproterozoic magmatism and deformation in the northern Blue Ridge, Virginia and Maryland: Application of SHRIMP U-Pb geochronology and integrated field studies in the definition of Grenvillian tectonic history. , 2010, , .		23
230	Geochronology of the Alpine UHP Rhodope Zone. , 2011, , 295-324.		23
231	Stratigraphic, geochronologic, and geochemical record of the Cryogenian Perry Canyon Formation, northern Utah: Implications for Rodinia rifting and snowball Earth glaciation. Bulletin of the Geological Society of America, 2013, 125, 1442-1467.	3.3	23
232	Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina. Journal of South American Earth Sciences, 2012, 34, 10-25.	1.4	22
233	Detrital zircons U–Pb SHRIMP ages and provenance of La Modesta Formation, Patagonia Argentina. Journal of South American Earth Sciences, 2013, 47, 32-46.	1.4	21
234	A-type magmatism in the sierras of Maz and Espinal: A new record of Rodinia break-up in the Western Sierras Pampeanas of Argentina. Precambrian Research, 2009, 175, 77-86.	2.7	20

#	Article	IF	CITATIONS
235	40Ar/39Ar and U–Pb SHRIMP dating of Aptian tuff cones in the Aisén Basin, Central Patagonian Cordillera. Journal of South American Earth Sciences, 2010, 29, 731-737.	1.4	19
236	Late Permian–Early Triassic igneous activity in the Attic Cycladic Belt (Attica): New geochronological data and geodynamic implications. Tectonophysics, 2013, 595-596, 140-147.	2.2	19
237	The Mejillonia suspect terrane (Northern Chile): Late Triassic fast burial and metamorphism of sediments in a magmatic arc environment extending into the Early Jurassic. Gondwana Research, 2014, 25, 1272-1286.	6.0	19
238	Origin and emplacement of a middle Cretaceous gneiss dome, Fosdick Mountains, West Antarctica. , 2004, , .		18
239	Timing of extension in the Pioneer metamorphic core complex with implications for the spatialâ€temporal pattern of Cenozoic extension and exhumation in the northern U.S. Cordillera. Tectonics, 2012, 31, .	2.8	18
240	Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case. Tectonophysics, 2017, 712-713, 249-269.	2.2	18
241	Scouting Craton's Edge in Paleo-Pacific Gondwana. , 2006, , 165-173.		18
242	Siliciclastic record of rapid denudation in response to convergent-margin orogenesis, Ross Orogen, Antarctica. , 2004, , .		18
243	Structural, metamorphic, and geochronological constraints on alternating compression and extension in the Early Paleozoic Gondwanan Pacific margin, northeastern Australia. Tectonics, 2007, 26, n/a-n/a.	2.8	17
244	U–Pb SHRIMP ages of detrital granulite-facies rutiles: further constraints on provenance of Jurassic sandstones on the Norwegian margin. Geological Magazine, 2011, 148, 473-480.	1.5	17
245	U-Pb geochronology and evolution of Mesoproterozoic basement rocks, western Connecticut. , 2004, , 729-753.		16
246	SHRIMP U–Pb dating of the Antucoya porphyry copper deposit: new evidence for an Early Cretaceous porphyry-related metallogenic epoch in the Coastal Cordillera of northern Chile. Mineralium Deposita, 2006, 41, 637-644.	4.1	16
247	Tectonic, magmatic, and metamorphic history of the New Jersey Highlands: New insights from SHRIMP U-Pb geochronology. , 2010, , .		16
248	Petrologic and geochronologic evolution of the Grenville orogen, northern Blue Ridge Province, Virginia. , 2004, , 647-677.		15
249	Field-based investigations of an â€~Infracambrian' clastic succession in SE Libya and its bearing on the evolution of the Al Kufrah Basin. Geological Society Special Publication, 2009, 326, 193-210.	1.3	15
250	Detrital zircon age constraints on the provenance of sandstones on Hatton Bank and Edoras Bank, NE Atlantic. Journal of the Geological Society, 2009, 166, 137-146.	2.1	15
251	Ordovician volcanic-arc terrane in the Central Appalachian Piedmont of Maryland and Virginia: SHRIMP U-Pb geochronology, field relations, and tectonic significance. , 2010, , .		15
252	First Late Jurassic dinosaur bones from Chile. Journal of Vertebrate Paleontology, 2008, 28, 529-534.	1.0	14

#	Article	IF	CITATIONS
253	Timing of diagenesis and very lowâ€grade metamorphism in the eastern sector of the Sierra de Cameros (Iberian Range, Spain): a U–Pb SHRIMP study on monazite. Terra Nova, 2009, 21, 438-445.	2.1	14
254	U–Pb geochronological constraints on the timing of episodic regional metamorphism and rapid high-T exhumation of the Grand Forks complex, British Columbia. Lithos, 2013, 156-159, 241-267.	1.4	14
255	Isotopic shifts in the Cenozoic Andean arc of central Chile: Records of an evolving basement throughout cordilleran arc mountain building. Geology, 2013, 41, 931-934.	4.4	13
256	U-Pb zircon ages of the Wildhorse gneiss, Pioneer Mountains, south-central Idaho, and tectonic implications. , 2017, 13, 681-698.		13
257	Pliocene and Quaternary stratigraphic architecture and drainage systems of the Big Lost Trough, northeastern Snake River Plain, Idaho. , 2002, , .		11
258	Hf- and O-isotope data from detrital and granitoid zircons reveal characteristics of the Permian–Triassic magmatic belt along the Antarctic sector of Gondwana. , 2019, 15, 576-604.		11
259	Mafic Dykes from Heimefrontfjella and implications for the post-Grenvillian to pre-Pan-African geological evolution of western Dronning Maud Land, Antarctica. Antarctic Science, 2003, 15, 379-391.	0.9	10
260	Variscan sourcing of Westphalian (Pennsylvanian) sandstones in the Canonbie Coalfield, UK. Geological Magazine, 2010, 147, 718-727.	1.5	10
261	Interplay of proximal and distal sources in Devonian–Carboniferous sandstones of the Clair Basin, west of Shetland, revealed by detrital zircon U–Pb ages. Journal of the Geological Society, 2012, 169, 691-702.	2.1	10
262	Insights into crust formation and recycling in North Africa from combined U–Pb, Lu–Hf and O isotope data of detrital zircons from Devonian sandstone of southern Libya. Geological Society Special Publication, 2014, 386, 281-292.	1.3	10
263	Deciphering multiple Mesoproterozoic and Paleozoic events recorded in zircon and titanite from the Baltimore Gneiss, Maryland: SEM imaging, SHRIMP U-Pb geochronology, and EMP analysis. , 2004, , 411-434.		9
264	The role of East Greenland as a source of sediment to the VÃ,ring Basin during the Late Cretaceous. Norwegian Petroleum Society Special Publications, 2005, 12, 83-110.	0.1	9
265	SHRIMP Uâ€Pb Zircon Age of the Inishi Migmatite around the Kamioka Mining Area, Hida Metamorphic Complex, Central Japan. Resource Geology, 2006, 56, 17-26.	0.8	9
266	Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: Petrology, geochronology, geochemistry and petrogenetic implications. Precambrian Research, 2010, 177, 308-322.	2.7	9
267	MINERAL CHEMISTRY AND SHRIMP U-Pb GEOCHRONOLOGY OF MESOPROTEROZOIC POLYCRASE-TITANITE VEINS IN THE SULLIVAN Pb-Zn-Ag DEPOSIT, BRITISH COLUMBIA. Canadian Mineralogist, 2008, 46, 361-378.	1.0	8
268	Visean sinistral wrench faulting along the Sillon Houiller in the French Massif Central: Late Variscan tectonic implications. Bulletin - Societie Geologique De France, 2009, 180, 513-528.	2.2	8
269	The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track. Journal of Volcanology and Geothermal Research, 2009, 188, 237-249.	2.1	8
270	Geochemistry and geochronology of the shallow-level La Esperanza magmatic system (Permian-Triassic), Northern Patagonia. Journal of South American Earth Sciences, 2019, 96, 102347.	1.4	8

#	Article	IF	CITATIONS
271	Evolution of the Late Cretaceous Nanaimo Basin, British Columbia, Canada: Definitive provenance links to northern latitudes. , 2021, 17, 2197-2233.		6
272	Zircon O and Hf isotopic constraints on the genesis of Permian–Triassic magmatic and metamorphic rocks in the Antarctic Peninsula and correlations with Patagonia. Journal of South American Earth Sciences, 2020, 104, 102848.	1.4	5
273	Generation of Tonalite and Trondhjemite by Subvolcanic Fractionation and Partial Melting in the Zarza Intrusive Complex, Western Peninsular Ranges Batholith, Northwestern Mexico. Journal of Petrology, 1999, 40, 983-1010.	2.8	5
274	Depósitos burdigalianos de la Formación Santa Cruz en Sierra Baguales, Cuenca Austral (Magallanes): Edad, ambiente de deposición y vertebrados fósiles Andean Geology, 2013, 40, .	0.5	5
275	Alunite alteration of tuffaceous layers and zircon dating, Upper Permian Kennedy Group, Carnarvon Basin, Western Australia. Australian Journal of Earth Sciences, 2004, 51, 189-203.	1.0	4
276	Depositional history, tectonics, and provenance of the Cambrian-Ordovician boundary interval in the western margin of the North China block: Reply. Bulletin of the Geological Society of America, 2017, 129, 1022-1024.	3.3	2
277	Datation U/Pb : âge Briovérien de la série d'Erquy (Massif armoricain, France). Comptes Rendus De L'Acad̩mie Des Sciences Earth & Planetary Sciences S̩rie II, Sciences De La Terre Et Des Plan̕tes =, 2001, 333, 427-434.	0.2	1
278	Provenance and age constraints of Paleozoic siliciclastic rocks from the Ellsworth Mountains in West Antarctica, as determined by detrital zircon geochronology. Bulletin of the Geological Society of America, 0, , .	3.3	1
279	Erratum for Schmidt et al., Journal of the Geological Society, London, 169 (6) 691–702. Journal of the Geological Society, 2013, 170, 224-224.	2.1	0
280	The Ouarzazate Supergroup and its plutonic keel: the relicts of an Ediacaran silicic large igneous province in North Africa. Journal of the Geological Society, 2022, 179, .	2.1	0