Paul Rösch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8774848/publications.pdf

Version: 2024-02-01

150 4,401 papers citations

31 h-index 58 g-index

153 all docs 153
docs citations

153 times ranked 4169 citing authors

#	Article	IF	CITATIONS
1	A NusE:NusG Complex Links Transcription and Translation. Science, 2010, 328, 501-504.	6.0	294
2	Structure of Amyloid A4-(1-40)-Peptide of Alzheimer's Disease. FEBS Journal, 1995, 233, 293-298.	0.2	273
3	Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochemical Journal, 2006, 395, 463-472.	1.7	202
4	An \hat{l}_{\pm} Helix to \hat{l}^2 Barrel Domain Switch Transforms the Transcription Factor RfaH into a Translation Factor. Cell, 2012, 150, 291-303.	13.5	201
5	Two Structurally Independent Domains of E. coli NusG Create Regulatory Plasticity via Distinct Interactions with RNA Polymerase and Regulators. Journal of Molecular Biology, 2009, 391, 341-358.	2.0	170
6	Allergic Cross-reactivity Made Visible. Journal of Biological Chemistry, 2001, 276, 22756-22763.	1.6	151
7	The structure of iron–sulfur proteins. Progress in Biophysics and Molecular Biology, 1998, 70, 95-136.	1.4	131
8	Structural Rearrangements of HIV-1 Tat-responsive RNA upon Binding of Neomycin B. Journal of Biological Chemistry, 2000, 275, 20660-20666.	1.6	131
9	Mutational epitope analysis of Pru av 1 and Api g 1 , the major allergens of cherry (Prunus avium) and celery (Apium graveolens): correlating IgE reactivity with three-dimensional structure. Biochemical Journal, 2003, 376, 97-107.	1.7	113
10	Secret of the major birch pollen allergen Bet ν 1: identification of the physiological ligand. Biochemical Journal, 2014, 457, 379-390.	1.7	80
11	Secondary Structure and Tertiary Fold of the Human Immunodeficiency Virus Protein U (Vpu) Cytoplasmic Domain in Solution. FEBS Journal, 1997, 245, 581-588.	0.2	73
12	Antitermination in bacteriophage λ. FEBS Journal, 2000, 267, 2397-2408.	0.2	72
13	Solution Structures of Human Parathyroid Hormone Fragments hPTH(1–34) and hPTH(1–39) and Bovine Parathyroid Hormone Fragment bPTH(1–37). Biochemical and Biophysical Research Communications, 2000, 267, 213-220.	1.0	70
14	Structure of Human Parathyroid Hormone 1–37 in Solution. Journal of Biological Chemistry, 1995, 270, 15194-15202.	1.6	66
15	CD and NMR Studies of Prion Protein (PrP) Helix 1. Journal of Biological Chemistry, 2003, 278, 50175-50181.	1.6	66
16	High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expression and Purification, 2003, 31, 250-259.	0.6	53
17	Reversible fold-switching controls the functional cycle of the antitermination factor RfaH. Nature Communications, 2019, 10, 702.	5.8	50
18	Structure ofSynechococcus elongatus[Fe2S2] Ferredoxin in Solutionâ€. Biochemistry, 1996, 35, 12831-12841.	1,2	48

#	Article	IF	Citations
19	Cure and Curse: E. coli Heat-Stable Enterotoxin and Its Receptor Guanylyl Cyclase C. Toxins, 2010, 2, 2213-2229.	1.5	48
20	Solution Structure, Dynamics, and Hydrodynamics of the Calcium-bound Cross-reactive Birch Pollen Allergen Bet v 4 Reveal a Canonical Monomeric Two EF-Hand Assembly with a Regulatory Function. Journal of Molecular Biology, 2004, 336, 1141-1157.	2.0	45
21	The universally-conserved transcription factor RfaH is recruited to a hairpin structure of the non-template DNA strand. ELife, 2018, 7, .	2.8	45
22	Generation of a Non-prolyl cis Peptide Bond in Ribonuclease T1. Journal of Molecular Biology, 1994, 240, 288-293.	2.0	43
23	Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Protein Science, 2005, 14, 2487-2498.	3.1	43
24	Pipecolic Acid Derivatives As Small-Molecule Inhibitors of the <i>Legionella</i> MIP Protein. Journal of Medicinal Chemistry, 2011, 54, 277-283.	2.9	43
25	Transcription is regulated by NusA:NusG interaction. Nucleic Acids Research, 2016, 44, 5971-5982.	6.5	42
26	Cross-reactivity of pollen and food allergens: soybean Gly m 4 is a member of the Bet ν 1 superfamily and closely resembles yellow lupine proteins. Bioscience Reports, 2009, 29, 183-192.	1.1	40
27	Domain interactions of the transcription–translation coupling factor <i>Escherichia coli</i> NusG are intermolecular and transient. Biochemical Journal, 2011, 435, 783-789.	1.7	38
28	Interdomain contacts control folding of transcription factor RfaH. Nucleic Acids Research, 2013, 41, 10077-10085.	6.5	37
29	Solution Structure of the Human CC Chemokine 2: A Monomeric Representative of the CC Chemokine Subtypeâ€,‡. Biochemistry, 1999, 38, 5995-6002.	1.2	33
30	NusA Interaction with the α Subunit of E.Âcoli RNA Polymerase Is via the UP Element Site and Releases Autoinhibition. Structure, 2011, 19, 945-954.	1.6	33
31	Regulation of Foamy Virus Protease Activity by Viral RNA: a Novel and Unique Mechanism among Retroviruses. Journal of Virology, 2011, 85, 4462-4469.	1.5	32
32	Mutational epitope analysis and cross-reactivity of two isoforms of Api g 1 , the major celery allergen. Molecular Immunology, 2007, 44, 2518-2527.	1.0	31
33	Conformation, catalytic site, and enzymatic mechanism of the PR10 allergen-related enzyme norcoclaurine synthase. Biochemical Journal, 2008, 413, 281-290.	1.7	31
34	RNA-binding specificity of E. coli NusA. Nucleic Acids Research, 2009, 37, 4736-4742.	6.5	31
35	Putative aggregation initiation sites in prion protein. FEBS Letters, 2006, 580, 2033-2040.	1.3	30
36	Ligand Recognition of the Major Birch Pollen Allergen Bet ν 1 is Isoform Dependent. PLoS ONE, 2015, 10, e0128677.	1.1	30

#	Article	IF	Citations
37	Thermotoga maritimaNusG: domain interaction mediates autoinhibition and thermostability. Nucleic Acids Research, 2017, 45, 446-460.	6.5	30
38	Sequence-Specific Resonance Assignments of the 1H-NMR Spectra and Structural Characterization in Solution of the HIV-1 Transframe Protein p6*. FEBS Journal, 1996, 237, 383-392.	0.2	29
39	Structural studies on the RNA-recognition motif of NELF E, a cellular negative transcription elongation factor involved in the regulation of HIV transcription. Biochemical Journal, 2006, 400, 449-456.	1.7	29
40	The Solution Structure of the Simian Foamy Virus Protease Reveals a Monomeric Protein. Journal of Molecular Biology, 2008, 381, 141-149.	2.0	29
41	Structural rearrangements on HIV-1 Tat (32-72) TAR complex formation. FEBS Letters, 1996, 384, 255-259.	1.3	28
42	Secondary Structure and Tertiary Fold of the Birch Pollen Allergen Bet ν 1 in Solution. Journal of Biological Chemistry, 1996, 271, 19243-19250.	1.6	28
43	Accurate Disulfide Formation in Escherichia coli: Overexpression and Characterization of the First Domain (HF6478) of the Multiple Kazal-Type Inhibitor LEKTI. Protein Expression and Purification, 2001, 22, 108-112.	0.6	28
44	Role of the prosequence of guanylin. Protein Science, 1999, 8, 1850-1859.	3.1	27
45	The structure of human parathyroid hormone-related protein(1-34) in near-physiological solution. FEBS Letters, 1999, 444, 239-244.	1.3	27
46	Formation of transient dimers by a retroviral protease. Biochemical Journal, 2010, 427, 197-203.	1.7	27
47	Domain Motions of the Mip Protein fromLegionella pneumophilaâ€,‡. Biochemistry, 2006, 45, 12303-12311.	1.2	26
48	Interaction of the Intrinsically Unstructured Phage λ N Protein with Escherichia coli NusA. Biochemistry, 2006, 45, 4542-4549.	1.2	26
49	Synthesis, biological activity and isomerism of guanylate cyclase Câ€activating peptides guanylin and uroguanylin. Chemical Biology and Drug Design, 1997, 50, 222-230.	1.2	26
50	Inhibition of Foamy Virus Reverse Transcriptase by Human Immunodeficiency Virus Type 1 RNase H Inhibitors. Antimicrobial Agents and Chemotherapy, 2014, 58, 4086-4093.	1.4	26
51	Identification of a natural ligand of the hazel allergen Cor a 1. Scientific Reports, 2019, 9, 8714.	1.6	26
52	Structure-Activity Relation of NH2-terminal Human Parathyroid Hormone Fragments. Journal of Biological Chemistry, 1998, 273, 4308-4316.	1.6	25
53	The Structure of the Coliphage HK022 Nun Protein-λ-phage boxB RNA Complex. Journal of Biological Chemistry, 2001, 276, 32064-32070.	1.6	25
54	The E. coliNus A carboxy-terminal domains are structurally similar and show specific RNAP- and \hat{l} »N interaction. Protein Science, 2005, 14, 2018-2029.	3.1	25

#	Article	IF	Citations
55	Transformer proteins. Cell Cycle, 2012, 11, 4289-4290.	1.3	25
56	Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy. Scientific Reports, $2015, 5, 16428$.	1.6	25
57	Equine infectious anemia virus Tat is a predominantly helical protein. FEBS Journal, 1993, 218, 973-976.	0.2	24
58	Trifluoroethanol Stabilizes a Helix-Turn-Helix Motif in Equine Infectious-Anemia-Virus Trans -Activator Protein. FEBS Journal, 1994, 225, 855-861.	0.2	24
59	Characterization of Lck-Binding Elements in the Herpesviral Regulatory Tip Proteinâ€. Biochemistry, 2004, 43, 14932-14939.	1.2	24
60	High-yield expression and purification of isotopically labeled norcoclaurine synthase, a Bet v 1-homologous enzyme, from Thalictrum flavum for NMR studies. Protein Expression and Purification, 2007, 56, 197-204.	0.6	24
61	The Structural Isomerisation of Human-Muscle Adenylate Kinase as Studied by 1H-Nuclear Magnetic Resonance. FEBS Journal, 1982, 126, 531-536.	0.2	23
62	Binding, Domain Orientation, and Dynamics of the Lck SH3â^'SH2 Domain Pair and Comparison with Other Src-Family Kinases. Biochemistry, 2005, 44, 13043-13050.	1.2	23
63	One peptide, two topologies: structure and interconversion dynamics of human uroguanylin isomers. Chemical Biology and Drug Design, 1998, 52, 229-240.	1.2	23
64	Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochemical Journal, 2010, 425, 373-380.	1.7	23
65	Fine tuning of the E. coli NusB:NusE complex affinity to BoxA RNA is required for processive antitermination. Nucleic Acids Research, 2010, 38, 314-326.	6.5	22
66	Cloning, High-Yield Expression in Escherichia coli, and Purification of Biologically Active HIV-1 Tat Protein. Protein Expression and Purification, 1996, 8, 75-84.	0.6	21
67	An NMR-Derived Model for the Solution Structure of Oxidized Thermotoga maritima 1[Fe4-S4] Ferredoxin. FEBS Journal, 1996, 237, 726-735.	0.2	21
68	The Solution Structure of a Chimeric LEKTI Domain Reveals a Chameleon Sequenceâ€. Biochemistry, 2004, 43, 11238-11247.	1.2	21
69	Binding of TCA to the Prion Protein: Mechanism, Implication for Therapy, and Application as Probe for Complex Formation of Bio-macromolecules. Journal of Biomolecular Structure and Dynamics, 2009, 27, 163-170.	2.0	21
70	Solution structure of the strawberry allergen Fra a 1. Bioscience Reports, 2012, 32, 567-575.	1.1	21
71	The Interaction of HIV-1 Tat(32-72) with its Target RNA: A Fluorescence and Nuclear Magnetic Resonance Study. Biochemical and Biophysical Research Communications, 1997, 241, 31-36.	1.0	20
72	Identification and characterization of a eukaryotically encoded rubredoxin in a cryptomonad alga1. FEBS Letters, 2000, 471, 191-196.	1.3	19

#	Article	IF	CITATIONS
73	The role of <i>E. coli </i> Nus-Factors in transcription regulation and transcription. Transcription, 2011, 2, 130-134.	1.7	19
74	Solution Structure of Human Proguanylin. Journal of Biological Chemistry, 2003, 278, 24118-24124.	1.6	18
75	1H Nuclear-Magnetic-Resonance Investigation of Oxidized Fe4S4 Ferredoxin from Thermotoga maritima. Hyperfine-Shifted Resonances, Sequence-Specific Assignments and Secondary Structure. FEBS Journal, 1995, 229, 658-668.	0.2	18
76	Enlarging the Toolbox for Allergen Epitope Definition with an Allergen-Type Model Protein. PLoS ONE, 2014, 9, e111691.	1.1	18
77	An Autoinhibited State in the Structure of Thermotoga maritima NusG. Structure, 2013, 21, 365-375.	1.6	16
78	The Phosphoenolpyruvate-Dependent Phosphotransferase System of Staphylococcus aureus. Complete Tyrosine Assignments in the 1H Nuclear-Magnetic-Resonance Spectrum of the Phosphocarrier Protein HPr. FEBS Journal, 1979, 96, 43-48.	0.2	15
79	The effect of phosphorylation of the histidyl residue in the tetrapeptide Gly-Gly-His-Ala. Changes of chemical shift and pK values in 1H- and 31P-NMR spectra. Magnetic Resonance in Chemistry, 1981, 17, 88-91.	0.7	15
80	Proton NMR studies of the GDP.Mg2+ complex of the Ha-ras oncogene product p21. Biochemical and Biophysical Research Communications, 1988, 150, 444-448.	1.0	15
81	Structural Model of the HIV-1 Tat(46–58)-TAR Complex. Journal of Biomolecular Structure and Dynamics, 1998, 16, 683-692.	2.0	15
82	Carboxyâ€terminal extension stabilizes the topological stereoisomers of guanylin. Chemical Biology and Drug Design, 1998, 52, 518-525.	1.2	15
83	31 P NMR spectra of thiophosphate analogues of guanosine nucleotides. FEBS Letters, 1980, 121, 211-214.	1.3	14
84	Exploring RNA polymerase regulation by NMR spectroscopy. Scientific Reports, 2015, 5, 10825.	1.6	14
85	NMR-studies of phosphoryl transferring enzymes. Progress in Nuclear Magnetic Resonance Spectroscopy, 1986, 18, 123-169.	3.9	13
86	Solution structure of the human CD4 (403–419) receptor peptide. Journal of Biomedical Science, 1996, 3, 435-441.	2.6	13
87	NELF-E RRM Undergoes Major Structural Changes in Flexible Protein Regions on Target RNA Binding. Biochemistry, 2008, 47, 3756-3761.	1.2	13
88	Development, synthesis and structure–activity-relationships of inhibitors of the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Burkholderia pseudomallei. Bioorganic and Medicinal Chemistry, 2016, 24, 5134-5147.	1.4	13
89	The Therapeutically Anti-prion Active Antibody-fragment scFv-W226: Paramagnetic Relaxation-Enhanced NMR Spectroscopy aided Structure Elucidation of the Paratope-epitope Interface. Journal of Biomolecular Structure and Dynamics, 2010, 28, 13-22.	2.0	12
90	Structural requirements for enzymatic activities of foamy virus proteaseâ€reverse transcriptase. Proteins: Structure, Function and Bioinformatics, 2014, 82, 375-385.	1.5	12

#	Article	IF	Citations
91	Quality and potency profile of eight recombinant isoallergens, largely mimicking total Bet v 1â€specific IgE binding of birch pollen. Clinical and Experimental Allergy, 2019, 49, 712-723.	1.4	12
92	Expression in Escherichia coli, Purification, and Spectroscopic Characterization of Two Mutant Bet v 1 Proteins. Biological Chemistry, 1997, 378, 687-95.	1.2	11
93	Solution Structure of Porcine Delta Sleep-inducing Peptide Immunoreactive Peptide A Homolog of the ShortsightedGene Product. Journal of Biological Chemistry, 1997, 272, 30918-30927.	1.6	11
94	Improving the efficiency of the Gaussian conformational database potential for the refinement of protein and nucleic acid structures. Journal of Biomolecular NMR, 2001, 21, 373-375.	1.6	11
95	Solution structure of Phl p 3, a major allergen from timothy grass pollen. Biological Chemistry, 2008, 389, 919-23.	1.2	11
96	SEMPRE: Spectral Editing Mediated by Paramagnetic Relaxation Enhancement. Journal of the American Chemical Society, 2009, 131, 18016-18017.	6.6	11
97	Transformation. RNA Biology, 2012, 9, 1418-1423.	1.5	11
98	The interaction of myosine S1 with phosphorothioates of ADP: An 18O exchange study by 31P NMR. Archives of Biochemistry and Biophysics, 1981, 211, 622-627.	1.4	10
99	Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga <i>Guillardia theta</i> . Protein Science, 2000, 9, 1474-1486.	3.1	10
100	pH and Heat Resistance of the Major Celery Allergen ApiÂgÂ1. Molecular Nutrition and Food Research, 2018, 62, e1700886.	1.5	10
101	Structure of the Cytoplasmic Domain of p23 in Solution: Implications for the Formation of COPI Vesicles. Biochemical and Biophysical Research Communications, 2000, 271, 401-408.	1.0	9
102	LEKTI domain 15 is a functional Kazal-type proteinase inhibitor. Protein Expression and Purification, 2008, 57, 45-56.	0.6	9
103	Structure and nucleic acid binding properties of KOW domains 4 and 6–7 of human transcription elongation factor DSIF. Scientific Reports, 2018, 8, 11660.	1.6	9
104	Biological activity and intracellular location of the Tat protein of equine infectious anemia virus. Gene, 1994, 150, 307-311.	1.0	8
105	Spectroscopic investigations of HIV-1 trans-activator and related peptides in aqueous solutions. Biophysical Chemistry, 1997, 63, 87-96.	1.5	8
106	Equine infectious anemia virus transactivator is a homeodomain-type protein 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 277, 749-755.	2.0	8
107	Letter to the Editor: Sequence-specific1H,13C and15N resonance assignments of AraÂhÂ6, an allergenic 2S albumin from peanut. Journal of Biomolecular NMR, 2004, 29, 93-94.	1.6	8
108	An Inhibitory Peptide Derived from the a-subunit of the Epithelial Sodium Channel (ENaC) Shows a Helical Conformation. Cellular Physiology and Biochemistry, 2012, 29, 761-774.	1.1	8

#	Article	IF	CITATIONS
109	The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology, 2012, 9, 73.	0.9	8
110	Nuclear magnetic resonance: Protein structure determination. Nature, 1986, 321, 469-470.	13.7	7
111	Sequence-specific 1H, 13C and 15N resonance assignments of SAM22, an allergenic stress-induced protein from soy bean. Journal of Biomolecular NMR, 2003, 26, 191-192.	1.6	7
112	Letter to the Editor: 1H, 13C, 15N backbone and sidechain resonance assignment of Mip(77?213) the PPlase domain of the Legionella pneumophila Mip protein. Journal of Biomolecular NMR, 2005, 31, 77-78.	1.6	7
113	The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with $\hat{l}\pm\hat{l}^2$ type topology. Biochemical and Biophysical Research Communications, 2008, 370, 414-418.	1.0	7
114	Folded or Not? Tracking Bet ν 1 Conformation in Recombinant Allergen Preparations. PLoS ONE, 2015, 10, e0132956.	1.1	7
115	Assignment of aromatic spin systems in the 1H nuclear magnetic resonance spectrum of adenylate kinase. Journal of Molecular Biology, 1985, 182, 341-345.	2.0	6
116	Proton-nuclear magnetic resonance studies of the aromatic spin systems of Escherichia coli adenylate kinase. Journal of Molecular Biology, 1988, 200, 745-748.	2.0	6
117	Structure and Activity of a Chimeric Interleukin-8-Melanoma-Growth-Stimulatory-Activity Protein. FEBS Journal, 1996, 235, 26-35.	0.2	6
118	Structure of the LAV6 peptide: A nucleation site for the correct receptor-induced refolding of the CD4-binding domain of HIV1 gp 120., 1997, 29, 203-211.		6
119	Role of Disulfide Bonds for the Structure and Folding of Proguanylinâ€. Biochemistry, 2004, 43, 10050-10057.	1.2	6
120	Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Engineering, Design and Selection, 2008, 22, 1-7.	1.0	6
121	The two domains of Mycobacterium tuberculosis Nus Gprotein are dynamically independent. Journal of Biomolecular Structure and Dynamics, 2016, 34, 352-361.	2.0	6
122	THE INFLUENCE OF METAL ION COMPLEXATION ON31P-NMR PARAMETERS OF PHOSPHOROTHIOATES OF GUANOSINE NUCLEOTIDES. Phosphorous and Sulfur and the Related Elements, 1984, 21, 9-16.	0.2	5
123	Sequence-specific 1H, 13C and 15N resonance assignments of the major cherry allergen Pru a 1. Journal of Biomolecular NMR, 2000, 18, 71-72.	1.6	5
124	Sequence-specific 1H, 13C and 15N resonance assignments and secondary structure of [2Fe-2S] ferredoxin from Halobacterium salinarum. Journal of Biomolecular NMR, 2000, 16, 347-348.	1.6	5
125	The Y39A Mutation of HK022 Nun Disrupts a <i>boxB</i> Interaction but Preserves Termination Activity. Biochemistry, 2008, 47, 7335-7341.	1.2	5
126	Fast Mapping of Biomolecular Interfaces by Random Spin Labeling (RSL). Journal of Biomolecular Structure and Dynamics, 2012, 29, 793-798.	2.0	5

#	Article	IF	Citations
127	Structural Characterisation of the E. coli Heat Stable Enterotoxin STh. The Open Spectroscopy Journal, 2009, 2, 34-39.	1.0	5
128	31P-NMR Studies on ATP·Mg2⊕, p21·Nucleotide, and Adenylate Kinase·Nucleotide Complexes. Chemical Shifts, Rate and Equilibrium Constants. Biological Chemistry Hoppe-Seyler, 1986, 367, 781-786.	1.4	4
129	Simulation of the cross-peak fine structure in 2D NMR spectroscopy by analytical calculation of the density operator in a product operator basis. Journal of Magnetic Resonance, 1987, 74, 177-183.	0.5	4
130	Homology Modeling of Adenylosuccinate Synthetase fromSaccharomyces CerevisiaeReveals a Possible Binding Region for Single-Stranded ARS Sequences. Journal of Biomolecular Structure and Dynamics, 1997, 14, 667-675.	2.0	4
131	Letter to the Editor: Sequence-Specific1H,13C,15N Resonance Assignments and Secondary Structure of the Carboxyterminal Domain of the E.Âcoli Transcription Factor NusA. Journal of Biomolecular NMR, 2004, 28, 193-194.	1.6	4
132	Structural Studies of the Equine Infectious Anemia Virus <i>trans</i> â€Activator Protein. FEBS Journal, 1996, 240, 45-52.	0.2	3
133	Nuclear magnetic resonance studies of allergens. Biomedical Applications, 2001, 756, 165-177.	1.7	3
134	Sequence-specific 1H, 13C and 15N resonance assignments of the SH3-SH2 domain pair from the human tyrosine kinase Lck. Journal of Biomolecular NMR, 2003, 27, 405-406.	1.6	2
135	Prosequence switching: An effective strategy to produce biologically activeE. coliheat-stable enterotoxin STh. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1537-1545.	2.0	2
136	AZT resistance alters enzymatic properties and creates an ATP-binding site in SFVmac reverse transcriptase. Retrovirology, 2015, 12, 21.	0.9	2
137	Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster. Biomolecular NMR Assignments, 2016, 10, 199-202.	0.4	2
138	Biophysics: Use of deuterated proteins in nuclear magnetic resonance. Nature, 1986, 323, 670-670.	13.7	1
139	Analysis of the IgE epitope profile of soybean allergen Gly m 4. Clinical and Translational Allergy, 2014, 4, .	1.4	1
140	Treatment of Peak Intensity Uncertainties in NMR Relaxation Data Analysis Can Lead to Severe Artifacts. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2004, 135, 1089.	0.9	0
141	Structural characterization of norcoclaurine synthase suggests the enzyme to be a true member of the Bet $v\ 1$ protein family. World Allergy Organization Journal, 2007, &NA, S261.	1.6	0
142	Solution structure of Phl p 3, a major allergen from Timothy grass pollen. World Allergy Organization Journal, 2007, &NA, S263.	1.6	0
143	The Membrane Proximal Extracellular Domain of Human hGC-B Folds Independently. Journal of Biomolecular Structure and Dynamics, 2009, 26, 465-472.	2.0	0
144	Regulation of foamy virus protease activity by viral RNA. Retrovirology, 2011, 8, A228.	0.9	0

#	Article	IF	CITATIONS
145	Cross-reactivity of pollen and food allergens: soybean Gly m 4 is a member of the Bet v 1 superfamily and closely resembles yellow lupine proteins. Clinical and Translational Allergy, 2011, 1 , .	1.4	0
146	Impact of human immunodeficiency virus type 1 ribonuclease H inhibitors on the polymerase and RNase H function of foamy virus reverse transcriptase. Retrovirology, 2013, 10, .	0.9	0
147	Identification of the natural ligand of Bet v $1.$ Clinical and Translational Allergy, $2014,4,.$	1.4	O
148	Find the match! A tool for residue-specific analysis of epitopes in Bet ν 1-like allergens. Clinical and Translational Allergy, 2014, 4, .	1.4	0
149	Studies on the Cellular Factors NELF and DSIF Involved in the Regulation of HIV Transcription. , 0, 2007, .		0
150	Structure and activity of human parathyroid hormone N-terminal fragments in solution. , 2002, , 645-646.		0