
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8774062/publications.pdf Version: 2024-02-01

ADIS | KATZOUDAKIS

#	Article	IF	CITATIONS
1	Paleovirology of the DNA viruses of eukaryotes. Trends in Microbiology, 2022, 30, 281-292.	3.5	20
2	Purifying Selection Determines the Short-Term Time Dependency of Evolutionary Rates in SARS-CoV-2 and pH1N1 Influenza. Molecular Biology and Evolution, 2022, 39, .	3.5	42
3	A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Current Biology, 2021, 31, 4689-4696.e5.	1.8	30
4	Phylogenomics of the <i>Maverick</i> Virus-Like Mobile Genetic Elements of Vertebrates. Molecular Biology and Evolution, 2021, 38, 1731-1743.	3.5	22
5	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	13.7	210
6	HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evolution, 2020, 6, veaa085.	2.2	7
7	The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annual Review of Virology, 2020, 7, 103-119.	3.0	34
8	The First Co-Opted Endogenous Foamy Viruses and the Evolutionary History of Reptilian Foamy Viruses. Viruses, 2019, 11, 641.	1.5	13
9	The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Research, 2019, 270, 197645.	1.1	10
10	Modular nature of simian foamy virus genomes and their evolutionary history. Virus Evolution, 2019, 5, vez032.	2.2	14
11	Interferon-Inducible Protein 16 (IFI16) Has a Broad-Spectrum Binding Ability Against ssDNA Targets: An Evolutionary Hypothesis for Antiretroviral Checkpoint. Frontiers in Microbiology, 2019, 10, 1426.	1.5	18
12	The Exaptation of HERV-H: Evolutionary Analyses Reveal the Genomic Features of Highly Transcribed Elements. Frontiers in Immunology, 2019, 10, 1339.	2.2	18
13	Reply to â€~Evolutionary stasis ofÂviruses?'. Nature Reviews Microbiology, 2019, 17, 329-330.	13.6	3
14	Prisoners of war — host adaptation and its constraints on virus evolution. Nature Reviews Microbiology, 2019, 17, 321-328.	13.6	117
15	Molecular epidemiology reveals the role of war in the spread of HIV in Ukraine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1051-1056.	3.3	65
16	Human Endogenous Retrovirus-K HML-2 integration within <i>RASGRF2</i> is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10434-10439.	3.3	18
17	Cell-Derived Viral Genes Evolve under Stronger Purifying Selection in Rhadinoviruses. Journal of Virology, 2018, 92, .	1.5	3
18	Marine origin of retroviruses in the early Palaeozoic Era. Nature Communications, 2017, 8, 13954.	5.8	104

#	Article	IF	CITATIONS
19	Roles of Endogenous Retroviruses in Early Life Events. Trends in Microbiology, 2017, 25, 876-877.	3.5	14
20	A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evolution, 2017, 3, vex016.	2.2	20
21	Disentangling the origins of virophages and polintons. Current Opinion in Virology, 2017, 25, 59-65.	2.6	16
22	STEAK: A specific tool for transposable elements and retrovirus detection in high-throughput sequencing data. Virus Evolution, 2017, 3, vex023.	2.2	21
23	De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies. PLoS ONE, 2016, 11, e0157600.	1.1	43
24	Evolution: Endogenous Viruses Provide Shortcuts in Antiviral Immunity. Current Biology, 2016, 26, R427-R429.	1.8	16
25	Reducing HIV infection in people who inject drugs is impossible without targeting recently-infected subjects. Aids, 2016, 30, 2885-2890.	1.0	18
26	The global spread of HIV-1 subtype B epidemic. Infection, Genetics and Evolution, 2016, 46, 169-179.	1.0	60
27	Time-Dependent Rate Phenomenon in Viruses. Journal of Virology, 2016, 90, 7184-7195.	1.5	128
28	Human endogenous retrovirus (HERV) expression is not induced by treatment with the histone deacetylase (HDAC) inhibitors in cellular models of HIV-1 latency. Retrovirology, 2016, 13, 10.	0.9	25
29	Phylogenetic Analysis Reveals That ERVs "Die Young" but HERV-H Is Unusually Conserved. PLoS Computational Biology, 2016, 12, e1004964.	1.5	22
30	Orthologous endogenous retroviruses exhibit directional selection since the chimp-human split. Retrovirology, 2015, 12, 52.	0.9	17
31	Convergent capture of retroviral superantigens by mammalian herpesviruses. Nature Communications, 2015, 6, 8299.	5.8	14
32	Endogenous retroviruses. Current Biology, 2015, 25, R644-R646.	1.8	17
33	Endogenous viruses: Connecting recent and ancient viral evolution. Virology, 2015, 479-480, 26-37.	1.1	152
34	Time dependency of foamy virus evolutionary rate estimates. BMC Evolutionary Biology, 2015, 15, 119.	3.2	28
35	Larger Mammalian Body Size Leads to Lower Retroviral Activity. PLoS Pathogens, 2014, 10, e1004214.	2.1	47
36	The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses. PLoS Genetics, 2014, 10, e1004332.	1.5	47

#	Article	IF	CITATIONS
37	Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology, 2014, 11, 61.	0.9	45
38	The origins of giant viruses, virophages and their relatives in host genomes. BMC Biology, 2014, 12, 51.	1.7	25
39	Sex-specific aspects of endogenous retroviral insertion and deletion. BMC Evolutionary Biology, 2013, 13, 243.	3.2	2
40	†There and back again': revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120504.	1.8	57
41	Paleovirology: inferring viral evolution from host genome sequence data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120493.	1.8	53
42	<i>Env</i> -less endogenous retroviruses are genomic superspreaders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7385-7390.	3.3	111
43	Paleovirology and virally derived immunity. Trends in Ecology and Evolution, 2012, 27, 627-636.	4.2	144
44	Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants. Retrovirology, 2011, 8, 54.	0.9	18
45	The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evolutionary Biology, 2011, 11, 131.	3.2	122
46	Phylogenetic Analysis of Murine Leukemia Virus Sequences from Longitudinally Sampled Chronic Fatigue Syndrome Patients Suggests PCR Contamination Rather than Viral Evolution. Journal of Virology, 2011, 85, 10909-10913.	1.5	15
47	Detecting natural selection in RNA virus populations using sequence summary statistics. Infection, Genetics and Evolution, 2010, 10, 421-430.	1.0	30
48	Endogenous Viral Elements in Animal Genomes. PLoS Genetics, 2010, 6, e1001191.	1.5	565
49	Disease-associated XMRV sequences are consistent with laboratory contamination. Retrovirology, 2010, 7, 111.	0.9	141
50	Structural and Functional Analysis of Prehistoric Lentiviruses Uncovers an Ancient Molecular Interface. Cell Host and Microbe, 2010, 8, 248-259.	5.1	57
51	B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. Nature Communications, 2010, 1, 102.	5.8	62
52	Prevalence of HIV type-1 drug-associated mutations in pre-therapy patients in the Free State, South Africa. Antiviral Therapy, 2009, 14, 975-984.	0.6	23
53	Macroevolution of Complex Retroviruses. Science, 2009, 325, 1512-1512.	6.0	146
54	HLA Footprints on Human Immunodeficiency Virus Type 1 Are Associated with Interclade Polymorphisms and Intraclade Phylogenetic Clustering. Journal of Virology, 2009, 83, 4605-4615.	1.5	40

#	Article	IF	CITATIONS
55	Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology, 2009, 6, 9.	0.9	64
56	Conserved Footprints of APOBEC3G on Hypermutated Human Immunodeficiency Virus Type 1 and Human Endogenous Retrovirus HERV-K(HML2) Sequences. Journal of Virology, 2008, 82, 8743-8761.	1.5	75
57	A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20362-20367.	3.3	183
58	Effects of Recombination Rate on Human Endogenous Retrovirus Fixation and Persistence. Journal of Virology, 2007, 81, 10712-10717.	1.5	39
59	Rate of Recombinational Deletion among Human Endogenous Retroviruses. Journal of Virology, 2007, 81, 9437-9442.	1.5	110
60	Discovery and analysis of the first endogenous lentivirus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6261-6265.	3.3	193
61	High Copy Number in Human Endogenous Retrovirus Families is Associated with Copying Mechanisms in Addition to Reinfection. Molecular Biology and Evolution, 2005, 22, 814-817.	3.5	132
62	BlastAlign: a program that uses blast to align problematic nucleotide sequences. Bioinformatics, 2005, 21, 122-123.	1.8	60
63	The evolutionary dynamics of endogenous retroviruses. Trends in Microbiology, 2005, 13, 463-468.	3.5	84
64	Long-term reinfection of the human genome by endogenous retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4894-4899.	3.3	350
65	Evaluating Phylogenetic Tree Shape: Two Modifications to Fusco & Cronk's Method. Journal of Theoretical Biology, 2002, 214, 99-103.	0.8	48
66	Macroevolution of hoverflies (Diptera: Syrphidae): the effect of using higher-level taxa in studies of biodiversity, and correlates of species richness. Journal of Evolutionary Biology, 2001, 14, 219-227.	0.8	56
67	A Mechanistic Evolutionary Model Explains the Time-Dependent Pattern of Substitution Rates in Viruses. SSRN Electronic Journal, 0, , .	0.4	1