Mark Peakman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773932/publications.pdf

Version: 2024-02-01

		126907	144013
59	5,083	33	57
papers	citations	h-index	g-index
61	61	61	5789
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Immune and Metabolic Effects of Antigen-Specific Immunotherapy Using Multiple \hat{I}^2 -Cell Peptides in Type 1 Diabetes. Diabetes, 2022, 71, 722-732.	0.6	11
2	Evaluating T cell responses prior to the onset of type 1 diabetes. Diabetic Medicine, 2022, , e14860.	2.3	3
3	Artificial Antigen Presenting Cells for Detection and Desensitization of Autoreactive T cells Associated with Type 1 Diabetes. Nano Letters, 2022, 22, 4376-4382.	9.1	3
4	Autoreactive T cell profiles are altered following allogeneic islet transplantation with alemtuzumab induction and re-emerging phenotype is associated with graft function. American Journal of Transplantation, 2021, 21, 1027-1038.	4.7	5
5	Quantitative assessment of NFî $^{\circ}$ B transcription factor activity. Journal of Immunological Methods, 2021, 492, 112954.	1.4	O
6	Mapping T Cell Responses to Native and Neo-Islet Antigen Epitopes in at Risk and Type 1 Diabetes Subjects. Frontiers in Immunology, 2021, 12, 675746.	4.8	8
7	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	8.6	220
8	Costimulation Blockade Disrupts CD4+ T Cell Memory Pathways and Uncouples Their Link to Decline in β-Cell Function in Type 1 Diabetes. Journal of Immunology, 2020, 204, 3129-3138.	0.8	13
9	GPU-Accelerated Discovery of Pathogen-Derived Molecular Mimics of a T-Cell Insulin Epitope. Frontiers in Immunology, 2020, 11, 296.	4.8	10
10	Synchronization of the Normal Human Peripheral Immune System: A Comprehensive Circadian Systems Immunology Analysis. Scientific Reports, 2020, 10, 672.	3.3	19
11	Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Frontiers in Immunology, 2020, 11, 633.	4.8	25
12	GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia, 2020, 63, $1186-1198$.	6.3	17
13	Proinsulin peptide promotes autoimmune diabetes in a novel HLA-DR3-DQ2-transgenic murine model of spontaneous disease. Diabetologia, 2019, 62, 2252-2261.	6.3	7
14	Antigen-based immune modulation therapy for type 1 diabetes: the era of precision medicine. Lancet Diabetes and Endocrinology,the, 2019, 7, 65-74.	11.4	102
15	The challenge of modulating \hat{l}^2 -cell autoimmunity in type 1 diabetes. Lancet Diabetes and Endocrinology,the, 2019, 7, 52-64.	11.4	124
16	Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders. Schizophrenia Bulletin, 2019, 45, 233-246.	4.3	28
17	Peptide–MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. Journal of Immunology, 2018, 200, 2263-2279.	0.8	87
18	Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes, 2018, 67, 687-696.	0.6	35

#	Article	IF	CITATIONS
19	Proinsulin-mediated induction of type 1 diabetes in HLA-DR4-transgenic mice. Scientific Reports, 2018, 8, 14106.	3.3	13
20	Peptide Immunotherapy for Type 1 Diabetesâ€"Clinical Advances. Frontiers in Immunology, 2018, 9, 392.	4.8	47
21	Optimized Peptide–MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Frontiers in Immunology, 2018, 9, 1378.	4.8	72
22	In silico and ex vivo approaches indicate immune pressure on capsid and non-capsid regions of coxsackie B viruses in the human system. PLoS ONE, 2018, 13, e0199323.	2.5	5
23	Autoreactive T effector memory differentiation mirrors \hat{l}^2 cell function in type 1 diabetes. Journal of Clinical Investigation, 2018, 128, 3460-3474.	8.2	57
24	Generation of human islet-specific regulatory T cells by TCR gene transfer. Journal of Autoimmunity, 2017, 79, 63-73.	6.5	102
25	Antigen-specific immunotherapy and influenza vaccination in type 1 diabetes: timing is everything. Diabetologia, 2017, 60, $1180-1184$.	6.3	0
26	An analysis of IL-36 signature genes and individuals with $\langle i \rangle$ IL1RL2 $\langle i \rangle$ knockout mutations validates IL-36 as a psoriasis therapeutic target. Science Translational Medicine, 2017, 9, .	12.4	124
27	Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Science Translational Medicine, 2017, 9, .	12.4	151
28	New insights into non-conventional epitopes as T cell targets: The missing link for breaking immune tolerance in autoimmune disease?. Journal of Autoimmunity, 2017, 84, 12-20.	6.5	23
29	Regulatory T cell dysfunction in type 1 diabetes: what's broken and how can we fix it?. Diabetologia, 2017, 60, 1839-1850.	6.3	134
30	Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia, 2017 , 60 , 2139 - 2147 .	6.3	59
31	T cell receptor \hat{I}^2 -chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nature Communications, 2017, 8, 1792.	12.8	81
32	Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia, 2017, 60, 126-133.	6.3	49
33	T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones. Journal of Immunological Methods, 2016, 430, 43-50.	1.4	28
34	Dendritic Cells Guide Islet Autoimmunity through a Restricted and Uniquely Processed Peptidome Presented by High-Risk HLA-DR. Journal of Immunology, 2016, 196, 3253-3263.	0.8	24
35	Discovery of a Selective Islet Peptidome Presented by the Highest-Risk HLA-DQ8 <i>trans</i> Diabetes, 2016, 65, 732-741.	0.6	35
36	Innate and adaptive immunity to human beta cell lines: implications for beta cell therapy. Diabetologia, 2016, 59, 170-175.	6.3	19

3

#	Article	IF	CITATIONS
37	More tricks with tetramers: a practical guide to staining T cells with peptide– <scp>MHC</scp> multimers. Immunology, 2015, 146, 11-22.	4.4	106
38	Heterogeneity in the Locomotory Behavior of Human Monocyte Subsets over Human Vascular Endothelium In Vitro. Journal of Immunology, 2015, 195, 1162-1170.	0.8	33
39	Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs. Journal of Immunology, 2015, 194, 463-474.	0.8	55
40	β-Cell–Specific CD8 T Cell Phenotype in Type 1 Diabetes Reflects Chronic Autoantigen Exposure. Diabetes, 2015, 64, 916-925.	0.6	95
41	Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes. Journal of Immunology, 2014, 192, 572-580.	0.8	52
42	Reduction in CD4 Central Memory T-Cell Subset in Costimulation Modulator Abatacept-Treated Patients With Recent-Onset Type 1 Diabetes Is Associated With Slower C-Peptide Decline. Diabetes, 2014, 63, 3449-3457.	0.6	79
43	Blood and Islet Phenotypes Indicate Immunological Heterogeneity in Type 1 Diabetes. Diabetes, 2014, 63, 3835-3845.	0.6	189
44	Human \hat{I}^2 -Cell Killing by Autoreactive Preproinsulin-Specific CD8 T Cells Is Predominantly Granule-Mediated With the Potency Dependent Upon T-Cell Receptor Avidity. Diabetes, 2013, 62, 205-213.	0.6	53
45	Antigen Targets of Type 1 Diabetes Autoimmunity. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007781-a007781.	6.2	171
46	Circulating Preproinsulin Signal Peptide–Specific CD8 T Cells Restricted by the Susceptibility Molecule HLA-A24 Are Expanded at Onset of Type 1 Diabetes and Kill β-Cells. Diabetes, 2012, 61, 1752-1759.	0.6	101
47	Can we vaccinate against Type 1 diabetes?. F1000 Biology Reports, 2012, 4, 19.	4.0	5
48	Diabetogenic T lymphocytes in human Type 1 diabetes. Current Opinion in Immunology, 2011, 23, 746-753.	5.5	79
49	Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated \hat{l}^2 -Cell Death. Diabetes, 2011, 60, 2112-2119.	0.6	178
50	Naturally Arising Human CD4 T-Cells That Recognize Islet Autoantigens and Secrete Interleukin-10 Regulate Proinflammatory T-Cell Responses via Linked Suppression. Diabetes, 2010, 59, 1451-1460.	0.6	96
51	Simultaneous Detection of Circulating Autoreactive CD8+ T-Cells Specific for Different Islet Cell–Associated Epitopes Using Combinatorial MHC Multimers. Diabetes, 2010, 59, 1721-1730.	0.6	187
52	Validity and Reproducibility of Measurement of Islet Autoreactivity by T-Cell Assays in Subjects With Early Type 1 Diabetes. Diabetes, 2009, 58, 2588-2595.	0.6	92
53	Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. Journal of Immunological Methods, 2009, 340, 11-24.	1.4	134
54	CD8 and Cytotoxic T Cells in Type 1 Diabetes. Novartis Foundation Symposium, 2008, 292, 113-121.	1.1	2

#	Article	IF	CITATIONS
55	CTLs are targeted to kill \hat{l}^2 cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	8.2	315
56	Immunological dysfunction, vaccination and Gulf War illness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 681-687.	4.0	28
57	Defective Suppressor Function in CD4+CD25+ T-Cells From Patients With Type 1 Diabetes. Diabetes, 2005, 54, 92-99.	0.6	745
58	Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. Journal of Clinical Investigation, 2004, 113, 451-463.	8.2	420
59	Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. Journal of Clinical Investigation, 1999, 104, 1449-1457.	8.2	128