
## Jialin Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773921/publications.pdf Version: 2024-02-01



ILALIN WEN

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the<br>determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography.<br>Journal of Chromatography A, 2009, 1216, 5504-5510.                | 1.8  | 166       |
| 2  | Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chemical Society Reviews, 2021, 50, 3211-3237.                                                                                                                                               | 18.7 | 147       |
| 3  | Strong BrÃ,nsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed<br>by a Rh–thiourea chiral phosphine complex via anion binding. Chemical Science, 2016, 7, 3047-3051.                                                                  | 3.7  | 134       |
| 4  | Rhodium atalyzed Asymmetric Hydrogenation of Unprotected NH Imines Assisted by a Thiourea.<br>Angewandte Chemie - International Edition, 2014, 53, 8467-8470.                                                                                                            | 7.2  | 117       |
| 5  | Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation. Chemical Reviews, 2021, 121, 7530-7567.                                                                                                                                                | 23.0 | 117       |
| 6  | BrÃ,nsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A Cocatalysis of Transition Metal and Anion Binding. Organic Letters, 2018, 20, 2143-2147.                                                                                       | 2.4  | 62        |
| 7  | Enantioselective Nickel-Catalyzed Mizoroki–Heck Cyclizations To Generate Quaternary Stereocenters.<br>Organic Letters, 2017, 19, 3338-3341.                                                                                                                              | 2.4  | 54        |
| 8  | Enantioselective Iridium-Catalyzed Hydrogenation of α-Keto Amides to α-Hydroxy Amides. Organic Letters,<br>2017, 19, 5920-5923.                                                                                                                                          | 2.4  | 51        |
| 9  | Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 2020, 53, 1905-1921.                                                                                                                               | 7.6  | 47        |
| 10 | Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea<br>Hydrogen Bonding. Organic Letters, 2016, 18, 4451-4453.                                                                                                                 | 2.4  | 46        |
| 11 | <i>C1</i> -Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones:<br>Reaction Scope and Enantioinduction Model. ACS Catalysis, 2020, 10, 13794-13799.                                                                                  | 5.5  | 45        |
| 12 | Homogeneous Hydrogenation with a Cobalt/Tetraphosphine Catalyst: A Superior Hydride Donor for<br>Polar Double Bonds and <i>N</i> -Heteroarenes. Journal of the American Chemical Society, 2019, 141,<br>20424-20433.                                                     | 6.6  | 44        |
| 13 | Nickel-Catalyzed Desymmetric Hydrogenation of Cyclohexadienones: An Efficient Approach to<br>All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 14560-14564.                                                                      | 6.6  | 41        |
| 14 | Desymmetrization of cyclic 1,3-diketones <i>via</i> Ir-catalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiral quaternary carbon. Chemical Science, 2019, 10, 6350-6353.                                                                  | 3.7  | 41        |
| 15 | Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of α-Substituted β-Ketoesters via<br>Dynamic Kinetic Resolution. Organic Letters, 2018, 20, 1888-1892.                                                                                                | 2.4  | 32        |
| 16 | Cobalt-Mediated Selective Bâ^'H Activation and Formation of a Coâ^'B Bond in the Reaction of the<br>16-Electron CpCo Half-Sandwich Complex Containing an <i>o</i> -Carborane-1,2-dithiolate Ligand with<br>Ethyl Diazoacetate. Inorganic Chemistry, 2011, 50, 4187-4194. | 1.9  | 30        |
| 17 | Highly enantioselective hydrogenation of α-oxy functionalized α,β-unsaturated acids catalyzed by a<br>ChenPhos–Rh complex in CF <sub>3</sub> CH <sub>2</sub> OH. Chemical Communications, 2016, 52,<br>2273-2276.                                                        | 2.2  | 29        |
| 18 | Iridium atalyzed Enantioselective Hydrogenation of Oxocarbenium Ions: A Case of Ionic<br>Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 6108-6114.                                                                                                  | 7.2  | 28        |

JIALIN WEN

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Multinuclear Self-Assembly via a ( <i>p</i> -Cymene)ruthenium Unit and an <i>o</i> -Carborane<br>Selenolate Ligand. Organometallics, 2011, 30, 298-304.                                                       | 1.1 | 23        |
| 20 | Rh-Catalyzed Asymmetric Hydrogenation of Unsaturated Medium-Ring NH Lactams: Highly<br>Enantioselective Synthesis of N-Unprotected 2,3-Dihydro-1,5-benzothiazepinones. Organic Letters, 2020,<br>22, 920-923. | 2.4 | 21        |
| 21 | Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic<br>Resolution Combined. Angewandte Chemie - International Edition, 2020, 59, 18166-18171.                        | 7.2 | 21        |
| 22 | Asymmetric hydrogenation of α,β-unsaturated sulfones by a rhodium/thiourea–bisphosphine complex.<br>Organic Chemistry Frontiers, 2019, 6, 1438-1441.                                                          | 2.3 | 19        |
| 23 | lridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters. Organic Chemistry<br>Frontiers, 2018, 5, 1209-1212.                                                                             | 2.3 | 17        |
| 24 | Catalytic asymmetric hydrogenation of ( <i>Z</i> )-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters. Chemical Science, 2020, 11, 851-855.                              | 3.7 | 17        |
| 25 | Iridium-Catalyzed Asymmetric Hydrogenation of α-Fluoro Ketones via a Dynamic Kinetic Resolution<br>Strategy. Organic Letters, 2020, 22, 7230-7233.                                                            | 2.4 | 14        |
| 26 | Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation. Organic Letters, 2020, 22, 8796-8801.                                              | 2.4 | 13        |
| 27 | lridium/f-Amphox-Catalyzed Asymmetric Hydrogenation of Styrylglyoxylamides. Synlett, 2018, 29, 2203-2207.                                                                                                     | 1.0 | 12        |
| 28 | Asymmetric Linear-Selective Hydroformylation of 1,1-Dialkyl Olefins Assisted by a Steric-Auxiliary Strategy. Organic Letters, 2020, 22, 4523-4526.                                                            | 2.4 | 11        |
| 29 | High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs. Journal of Flow Chemistry, 2021, 11, 763-772.                           | 1.2 | 11        |
| 30 | A universal reactor platform for batch and flow: application to homogeneous and heterogeneous hydrogenation. Reaction Chemistry and Engineering, 2020, 5, 1903-1908.                                          | 1.9 | 10        |
| 31 | Double Asymmetric Hydrogenation of α-Iminoketones: Facile Synthesis of Enantiopure Vicinal Amino<br>Alcohols. ACS Catalysis, 2021, 11, 12729-12735.                                                           | 5.5 | 10        |
| 32 | Asymmetric Hydrogenation of Cationic Intermediates for the Synthesis of Chiral<br><i>N</i> , <i>O</i> â€Acetals. Chemistry - A European Journal, 2020, 26, 11470-11477.                                       | 1.7 | 9         |
| 33 | Highly Chemo- and Enantioselective Hydrogenation of 2-Substituted-4-oxo-2-alkenoic Acids. Organic<br>Letters, 2020, 22, 4812-4816.                                                                            | 2.4 | 7         |
| 34 | Cobalt-Catalyzed Hydrogenative Transformation of Nitriles. ACS Catalysis, 2021, 11, 13761-13767.                                                                                                              | 5.5 | 6         |
| 35 | Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic<br>Resolution Combined. Angewandte Chemie, 2020, 132, 18323-18328.                                               | 1.6 | 5         |
| 36 | lridium atalyzed Enantioselective Hydrogenation of Oxocarbenium Ions: A Case of Ionic<br>Hydrogenation. Angewandte Chemie, 2020, 132, 6164-6170.                                                              | 1.6 | 5         |

Jialin Wen

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | lridium-catalyzed asymmetric hydrogenation of <i>N</i> -phosphinoylimine. Organic Chemistry<br>Frontiers, 2021, 8, 1223-1226.                                                                                | 2.3 | 4         |
| 38 | Examination of Milstein Ru-PNN and Rh-Tribi/Tetrabi dual metal catalyst for<br>isomerization-linear-hydroformylation of C4 raffinate and internal olefins. Green Synthesis and<br>Catalysis, 2022, 3, 40-45. | 3.7 | 4         |
| 39 | Iridium-Catalyzed Hydroiodination and Formal Hydroamination of Olefins with <i>N-</i> Iodo Reagents<br>and Molecular Hydrogen: An Umpolung Strategy. Organic Letters, 2022, 24, 1842-1847.                   | 2.4 | 3         |
| 40 | Enantioselective Hydrogenation of Endocyclic Enones: the Solution to a Historical Problem â€.<br>Chinese Journal of Chemistry, 2021, 39, 933-936.                                                            | 2.6 | 2         |
| 41 | Construction of a quaternary stereogenic center by asymmetric hydroformylation: a straightforward method to prepare chiral α-quaternary amino acids. Chemical Science, 2022, 13, 7215-7223.                  | 3.7 | 2         |