
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773578/publications.pdf Version: 2024-02-01

ANNE COOKE

#	Article	IF	CITATIONS
1	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
3	Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. Journal of Clinical Investigation, 2009, 119, 565-572.	8.2	477
4	Immune cell crosstalk in type 1 diabetes. Nature Reviews Immunology, 2010, 10, 501-513.	22.7	403
5	Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A β-chain or normal I-E α-chain. Nature, 1990, 345, 727-729.	27.8	341
6	Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunology, 1999, 21, 169-176.	1.5	306
7	<i>Schistosoma mansoni</i> antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. European Journal of Immunology, 2003, 33, 1439-1449.	2.9	304
8	Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature, 1990, 348, 639-642.	27.8	233
9	A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nature Reviews Immunology, 2005, 5, 420-426.	22.7	215
10	Inhibition of Autoimmune Type 1 Diabetes by Gastrointestinal Helminth Infection. Infection and Immunity, 2007, 75, 397-407.	2.2	205
11	Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nature Reviews Immunology, 2013, 13, 243-256.	22.7	195
12	Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nature Medicine, 2009, 15, 814-818.	30.7	188
13	Cyclophosphamide-Induced Type-1 Diabetes in the NOD Mouse Is Associated with a Reduction of CD4+CD25+Foxp3+ Regulatory T Cells. Journal of Immunology, 2006, 177, 6603-6612.	0.8	175
14	<i>Schistosoma mansoni</i> egg antigens induce Treg that participate in diabetes prevention in NOD mice. European Journal of Immunology, 2009, 39, 1098-1107.	2.9	174
15	Immune-Potentiating Effects of the Chemotherapeutic Drug Cyclophosphamide. Critical Reviews in Immunology, 2008, 28, 109-126.	0.5	143
16	Natural autoantibodies might prevent autoimmune disease. Trends in Immunology, 1986, 7, 363-364.	7.5	138
17	Immune mechanisms in type 1 diabetes. Trends in Immunology, 2013, 34, 583-591.	6.8	128
18	Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. European Journal of Immunology, 1991, 21, 1171-1180.	2.9	126

#	Article	IF	CITATIONS
19	The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to β cells in NOD mice. European Journal of Immunology, 1992, 22, 1913-1918.	2.9	112
20	Infection and autoimmunity: are we winning the war, only to lose the peace?. Trends in Parasitology, 2004, 20, 316-321.	3.3	89
21	The <i>S. mansoni</i> glycoprotein ï‰â€l induces Foxp3 expression in NOD mouse CD4 ⁺ T cells. European Journal of Immunology, 2011, 41, 2709-2718.	2.9	88
22	Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+â€fCD25+â€fFoxp3+regulatory T cells. Immunology, 2007, 121, 15-28.	4.4	87
23	Immune Modulation by <i>Schistosoma mansoni</i> Antigens in NOD Mice: Effects on Both Innate and Adaptive Immune Systems. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	87
24	Type 1 Diabetes Development Requires Both CD4+ and CD8+ T cells and Can Be Reversed by Non-Depleting Antibodies Targeting Both T Cell Populations. Review of Diabetic Studies, 2009, 6, 97-103.	1.3	85
25	AIRE's CARD Revealed, a New Structure for Central Tolerance Provokes Transcriptional Plasticity. Journal of Biological Chemistry, 2008, 283, 1723-1731.	3.4	80
26	Review series on helminths, immune modulation and the hygiene hypothesis: How might infection modulate the onset of type 1 diabetes?. Immunology, 2009, 126, 12-17.	4.4	78
27	Both CD4+T Cells and CD8+T Cells Are Required for Iodine Accelerated Thyroiditis in NOD Mice. Cellular Immunology, 1999, 192, 113-121.	3.0	77
28	CD5-positive B cells in rheumatoid arthritis and chronic lymphocytic leukemia. Trends in Immunology, 1987, 8, 37-39.	7.5	74
29	Glycosylation of IgG, immune complexes and IgG subclasses in the MRL-lpr/lpr mouse model of rheumatoid arthritis. European Journal of Immunology, 1990, 20, 2229-2233.	2.9	71
30	CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Current Opinion in Immunology, 2011, 23, 739-745.	5.5	69
31	The detection and enumeration of cytokine-secreting cells in mice and man and the clinical application of these assays. Journal of Immunological Methods, 1989, 120, 1-8.	1.4	63
32	Th17 Cells in Inflammatory Conditions. Review of Diabetic Studies, 2006, 3, 72-72.	1.3	62
33	Mechanisms of autoimmunity: a role for cross-reactive idiotypes. Trends in Immunology, 1983, 4, 170-175.	7.5	61
34	Epigenetic Changes at <i>ll12rb2</i> and <i>Tbx21</i> in Relation to Plasticity Behavior of Th17 Cells. Journal of Immunology, 2011, 186, 3373-3382.	0.8	61
35	Interplay of parasite-driven immune responses and autoimmunity. Trends in Parasitology, 2008, 24, 35-42.	3.3	55
36	Independent segregation of NZB immune abnormalities in NZB X C58 recombinant inbred mice. European Journal of Immunology, 1982, 12, 349-354.	2.9	53

#	Article	IF	CITATIONS
37	Inflammation and type one diabetes. International Immunology, 2012, 24, 339-346.	4.0	52
38	Salmonella typhimurium Infection in Nonobese Diabetic Mice Generates Immunomodulatory Dendritic Cells Able to Prevent Type 1 Diabetes. Journal of Immunology, 2006, 177, 2224-2233.	0.8	51
39	Patients With Chronic Pancreatitis Have Islet Progenitor Cells in Their Ducts, but Reversal of Overt Diabetes in NOD Mice by Anti-CD3 Shows No Evidence for Islet Regeneration. Diabetes, 2007, 56, 634-640.	0.6	51
40	Myeloperoxidase autoantibodies distinguish vasculitis mediated by anti-neutrophil cytoplasm antibodies from immune complex disease in MRL/Mp-lpr/lprmice: a spontaneous model for human microscopic angiitis. European Journal of Immunology, 1998, 28, 2217-2226.	2.9	47
41	The involvement of Ly 2+ T cells in beta cell destruction. Journal of Autoimmunity, 1990, 3, 101-109.	6.5	46
42	Cytotoxicity of tumor necrosis factor for thyroid epithelial cells and its regulation by interferon-γ. European Journal of Immunology, 1987, 17, 1855-1858.	2.9	45
43	Tolerogenic strategies to halt or prevent type 1 diabetes. Nature Immunology, 2001, 2, 810-815.	14.5	45
44	Murine Gammaherpesvirus-68 Infection Alters Self-Antigen Presentation and Type 1 Diabetes Onset in NOD Mice. Journal of Immunology, 2007, 179, 7325-7333.	0.8	45
45	Ornithine decarboxylase and ribosomal RNA synthesis during the stimulation of lymphocytes by phytohaemagglutinin. FEBS Letters, 1971, 16, 9-12.	2.8	44
46	Metabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Divergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset. Journal of Proteome Research, 2018, 17, 946-960.	3.7	44
47	AUTOIMMUNITY AND IDIOTYPES. Lancet, The, 1984, 324, 723-725.	13.7	43
48	Salmonella typhimurium infection halts development of type 1 diabetes in NOD mice. European Journal of Immunology, 2004, 34, 3246-3256.	2.9	43
49	The effect of bone marrow and thymus chimerism between non-obese diabetic (NOD) and NOD-E transgenic mice, on the expression and prevention of diabetes. European Journal of Immunology, 1993, 23, 2667-2675.	2.9	42
50	Cutting Edge: Interactions Through the IL-10 Receptor Regulate Autoimmune Diabetes. Journal of Immunology, 2001, 167, 6087-6091.	0.8	42
51	Idiotypes and autoimmunity. Seminars in Immunopathology, 1983, 6, 51-66.	4.0	41
52	Role of MHC class I expression and CD8+ T cells in the evolution of iodine-induced thyroiditis in NOD-H2h4 and NOD mice. European Journal of Immunology, 2000, 30, 1191-1202.	2.9	41
53	High efficiency antigen presentation by thyroglobulinprimed murine splenic B cells. European Journal of Immunology, 1987, 17, 393-398.	2.9	40
54	In vitro conversion of normal mouse lymphocytes by plasmacytoma RNA to express idiotypic specificities on their surface characteristic of the plasmacytoma immunoglobulin. Cellular Immunology, 1974, 11, 389-400.	3.0	39

#	Article	IF	CITATIONS
55	Phenotypic characteristics of cells involved in induced suppression to murine experimental autoimmune thyroiditis. European Journal of Immunology, 1988, 18, 1463-1467.	2.9	39
56	Active suppression induced by anti-CD4. European Journal of Immunology, 1993, 23, 965-968.	2.9	39
57	Altered course of visceral leishmaniasis in mice expressing transgenic I-E molecules. European Journal of Immunology, 1992, 22, 357-364.	2.9	38
58	The involvement of IL-12 in murine experimentally induced autoimmune thyroid disease. European Journal of Immunology, 1999, 29, 1933-1942.	2.9	38
59	Butyrophilin Btn2a2 Inhibits TCR Activation and Phosphatidylinositol 3-Kinase/Akt Pathway Signaling and Induces Foxp3 Expression in T Lymphocytes. Journal of Immunology, 2013, 190, 5030-5036.	0.8	38
60	Protection from Insulin Dependent Diabetes Mellitus Afforded by Insulin Antigens in Incomplete Freund's Adjuvant Depends on Route of Administration. Journal of Autoimmunity, 1998, 11, 127-130.	6.5	37
61	Nondepleting Anti-CD4 Has an Immediate Action on Diabetogenic Effector Cells, Halting Their Destruction of Pancreatic β Cells. Journal of Immunology, 2000, 165, 1949-1955.	0.8	37
62	The forces driving autoimmune disease. Journal of Autoimmunity, 1992, 5, 11-26.	6.5	35
63	An early age-related increase in the frequency of CD4+ Foxp3+cells in BDC2·5NOD mice. Immunology, 2007, 121, 565-576.	4.4	35
64	Expression of major histocompatibility complex class I antigens at low levels in the thymus induces T cell tolerance via a non-deletional mechanism. European Journal of Immunology, 1992, 22, 2655-2661.	2.9	34
65	Complete characterization of the expressed immune response genes in Biozzi AB/H mice: structural and functional identity between AB/H and NOD A region molecules. Immunogenetics, 1993, 37, 296-300.	2.4	34
66	IL-18 binding protein fusion construct delays the development of diabetes in adoptive transfer and cyclophosphamide-induced diabetes in NOD mouse. Clinical Immunology, 2005, 115, 74-79.	3.2	34
67	The Schistosoma mansoni T2 ribonuclease omega-1 modulates inflammasome-dependent IL-1Î ² secretion in macrophages. International Journal for Parasitology, 2015, 45, 809-813.	3.1	34
68	Vaccine against autoimmune disease: can helminths or their products provide a therapy?. Current Opinion in Immunology, 2013, 25, 418-423.	5.5	32
69	Infection and autoimmunity. Blood Cells, Molecules, and Diseases, 2009, 42, 105-107.	1.4	31
70	Tolerance Induction as a Therapeutic Strategy for the Control of Autoimmune Endocrine Disease in Mouse Models. Immunological Reviews, 1995, 144, 269-300.	6.0	30
71	Different Diabetogenic Potential of Autoaggressive CD8+ Clones Associated with IFN-Î ³ -Inducible Protein 10 (CXC Chemokine Ligand 10) Production but Not Cytokine Expression, Cytolytic Activity, or Homing Characteristics. Journal of Immunology, 2005, 174, 2746-2755.	0.8	30
72	Antiâ€ <scp>CD</scp> 3 treatment upâ€regulates programmed cell death proteinâ€1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology, 2017, 151, 248-260.	4.4	29

#	Article	IF	CITATIONS
73	Prevention of Diabetes but not Insulitis in NOD Mice Injected with Antibody to CD4. Journal of Autoimmunity, 1993, 6, 301-310.	6.5	27
74	Ornithine decarboxylase in phytohaemagglutinin stimulated lymphocytes: Control of degradation rate by amino acids. FEBS Letters, 1972, 21, 123-126.	2.8	26
75	Roles for TGF-β and Programmed Cell Death 1 Ligand 1 in Regulatory T Cell Expansion and Diabetes Suppression by Zymosan in Nonobese Diabetic Mice. Journal of Immunology, 2010, 185, 2754-2762.	0.8	26
76	Nondepleting anti-CD4 and soluble interleukin-1 receptor prevent autoimmune destruction of syngeneic islet grafts in diabetic NOD mice1. Transplantation, 2002, 74, 611-619.	1.0	25
77	Triggering a Second T Cell Receptor on Diabetogenic T Cells Can Prevent Induction of Diabetes. Journal of Experimental Medicine, 1999, 190, 577-584.	8.5	24
78	The Role of Regulatory T Cell Defects in Type I Diabetes and the Potential of these Cells for Therapy. Review of Diabetic Studies, 2005, 2, 9-9.	1.3	24
79	The genetics of the NOD mouse. Diabetes/metabolism Reviews, 1995, 11, 315-335.	0.3	23
80	Autoimmune thyroid disease induced by thyroglobulin and lipopolysaccharide is inhibited by soluble TNF receptor type I. European Journal of Immunology, 2002, 32, 1021-1028.	2.9	23
81	Helminth mediated modulation of Type 1 diabetes (T1D). International Journal for Parasitology, 2013, 43, 311-318.	3.1	23
82	Deficient production of anti-red cell autoantibodies by mice with an X-linked B lymphocyte defect. European Journal of Immunology, 1979, 9, 820-823.	2.9	22
83	Importance of TLR2 in the direct response of T lymphocytes to <i>Schistosoma mansoni</i> antigens. European Journal of Immunology, 2010, 40, 2221-2229.	2.9	22
84	Perturbation of naive TCR transgenic T cell functional responses and upstream activation events by anti-CD4 monoclonal antibodies. European Journal of Immunology, 2002, 32, 333-340.	2.9	21
85	An islet-homing NOD CD8+cytotoxic T cell clone recognizes GAD65and causes insulitis. Journal of Autoimmunity, 2003, 20, 97-109.	6.5	21
86	The role of antigen in autoimmune responses with special reference to changes in carbohydrate structure of IgG in rheumatoid arthritis. Journal of Autoimmunity, 1988, 1, 499-506.	6.5	20
87	The Nonconventional MHC Class II Molecule DM Governs Diabetes Susceptibility in NOD Mice. PLoS ONE, 2013, 8, e56738.	2.5	20
88	Thyroid autoimmunity. Current Opinion in Immunology, 1992, 4, 770-778.	5.5	19
89	Autoantigens in thyroid diseases. Seminars in Immunopathology, 1993, 14, 285-307.	4.0	19
90	Unique role of thyroxine in T cell recognition of a pathogenic peptide in experimental autoimmune thyroiditis. European Journal of Immunology, 1996, 26, 768-772.	2.9	19

#	Article	IF	CITATIONS
91	MAdCAM-1 is needed for diabetes development mediated by the T cell clone, BDC-2.5. Immunology, 2005, 116, 051025020346019.	4.4	19
92	T Cell Reactivity to Heat Shock Protein 60 in Diabetes-Susceptible and Genetically Protected Nonobese Diabetic Mice Is Associated with a Protective Cytokine Profile. Journal of Immunology, 2000, 165, 5544-5551.	0.8	17
93	Death in the AIRE. Trends in Immunology, 2008, 29, 306-312.	6.8	17
94	Autoimmunity and inflammation: murine models and translational studies. Mammalian Genome, 2011, 22, 377-389.	2.2	17
95	Opposing effects on the cell cycle of T lymphocytes by Fbxo7 via Cdk6 and p27. Cellular and Molecular Life Sciences, 2017, 74, 1553-1566.	5.4	17
96	Effect of phytohaemagglutinin on the nuclear RNA polymerase activity of human lymphocytes. Experimental Cell Research, 1973, 79, 179-185.	2.6	16
97	Tumour necrosis factor-alpha is a fundamental cytokine in autoimmune thyroid disease induced by thyroglobulin and lipopolysaccharide in interleukin-12 p40 deficient C57BL/6 mice. Immunology, 2003, 108, 50-54.	4.4	16
98	Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS ONE, 2017, 12, e0181964.	2.5	16
99	Expression and function of Qa-2 major histocompatibility complex class I molecules in transgenic mice. International Immunology, 1991, 3, 493-502.	4.0	15
100	Infectious triggers protect from autoimmunity. Seminars in Immunology, 2011, 23, 122-129.	5.6	15
101	Parasitic worms and inflammatory disease. Current Opinion in Rheumatology, 2012, 24, 394-400.	4.3	15
102	The development of insulin-dependent diabetes mellitus in non-obese diabetic mice: the role of CD4+ and CD8+ T cells. Biochemical Society Transactions, 1991, 19, 187-191.	3.4	14
103	Can infections protect against autoimmunity?. Current Opinion in Rheumatology, 2009, 21, 391-396.	4.3	14
104	Autoimmune encephalomyelitis in <scp>NOD</scp> mice is not initially a progressive multiple sclerosis model. Annals of Clinical and Translational Neurology, 2019, 6, 1362-1372.	3.7	14
105	Stimulation of the activities of solubilized pig lymphocyte RNA polymerases by phytohaemagglutinin. Biochemical and Biophysical Research Communications, 1973, 51, 1042-1047.	2.1	13
106	The Regulation of Autoimmunity Through CD4+ T Cells. Autoimmunity, 1993, 15, 21-23.	2.6	13
107	Peptide therapy for diabetes. Lancet, The, 1994, 343, 1168-1169.	13.7	13
108	Thymus-dependent monoclonal antibody-induced protection from transferred diabetes. European Journal of Immunology, 1998, 28, 4362-4373.	2.9	13

#	Article	IF	CITATIONS
109	Failure of the Anti-Inflammatory Parasitic Worm Product ES-62 to Provide Protection in Mouse Models of Type I Diabetes, Multiple Sclerosis, and Inflammatory Bowel Disease. Molecules, 2018, 23, 2669.	3.8	13
110	The role of autoantigen in autoimmunity. Immunology Letters, 1987, 16, 259-263.	2.5	12
111	Immunotherapy of autoimmune disease. Current Opinion in Immunology, 1993, 5, 925-933.	5.5	12
112	Generation and maintenance of autoantigen-specific CD8+ T cell clones isolated from NOD mice. Journal of Immunological Methods, 1999, 228, 87-95.	1.4	12
113	Loss of Invariant Chain Protects Nonobese Diabetic Mice against Type 1 Diabetes. Journal of Immunology, 2006, 177, 7588-7598.	0.8	12
114	PDâ€L1 blockade overrides <i>Salmonella typhimurium</i> â€mediated diabetes prevention in NOD mice: No role for Tregs. European Journal of Immunology, 2011, 41, 2966-2976.	2.9	12
115	EFFECT OF CYCLOSPORIN A ON THE FUNCTION OF T CELLS. Transplantation, 1981, 32, 338-340.	1.0	11
116	Restriction fragment length polymorphisms in the major histocompatibility complex of the non-obese diabetic mouse. Journal of Autoimmunity, 1990, 3, 289-298.	6.5	11
117	Syngeneic Islet Transplantation in Prediabetic BB-DP Rats - A Synchronized Model for Studying, βCell Destruction during the Development of IDDM. Autoimmunity, 1998, 28, 91-107.	2.6	11
118	Accelerated Turnover of MHC Class II Molecules in Nonobese Diabetic Mice Is Developmentally and Environmentally Regulated In Vivo and Dispensable for Autoimmunity. Journal of Immunology, 2013, 190, 5961-5971.	0.8	11
119	Hyperglycaemia does not affect antigen-specific activation and cytolytic killing by CD8+ T cells <i>in vivo</i> . Bioscience Reports, 2017, 37, .	2.4	11
120	The Impact of Infection on the Incidence of Autoimmune Disease. Current Topics in Medicinal Chemistry, 2004, 4, 521-529.	2.1	11
121	The Role of T Cells in Autoimmune Diseases. Pathology Research and Practice, 1981, 171, 173-196.	2.3	10
122	Both central and peripheral tolerance mechanisms play roles in diabetes prevention in NOD-E transgenic mice. Autoimmunity, 2008, 41, 383-394.	2.6	10
123	Overcoming self-destruction in the pancreas. Current Opinion in Biotechnology, 2009, 20, 511-515.	6.6	9
124	Cross-reactive Mycobacterial and Self hsp60 Epitope Recognition in I-Ag7 Expressing NOD, NOD-asp and Biozzi AB/H Mice. Journal of Autoimmunity, 2002, 18, 139-147.	6.5	8
125	Non-depleting Anti-CD4 Antibody not only Prevents Onset but Resolves Sialadenitis in NOD Mice. Autoimmunity, 2004, 37, 549-554.	2.6	8
126	Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Frontiers in Immunology, 2018, 9, 1006.	4.8	8

#	Article	lF	CITATIONS
127	Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Therapy, 2019, 26, 40-56.	4.5	8
128	The role of infiltrating macrophages in islet destruction and regrowth in a transgenic model. Journal of Autoimmunity, 1995, 8, 483-492.	6.5	7
129	Development of a procedure for the direct cloning of T-cell epitopes using bacterial expression systems. Journal of Immunological Methods, 1996, 196, 63-72.	1.4	7
130	Beneficial Effects of Non-Depleting Anti-CD4 in MRL/Mp- <i>lpr/lpr</i> Mice with Active Systemic Lupus Erythematosus and Microscopic Angiitis. Autoimmunity, 2001, 33, 245-251.	2.6	7
131	Differential sensitivity to 2′-deoxyguanosine of antigen-specific and nonspecific suppressor T cells in delayed hypersensitivity. Cellular Immunology, 1982, 72, 202-207.	3.0	6
132	Harnessing CD8+ Regulatory TÂCells: Therapy for Type 1 Diabetes?. Immunity, 2010, 32, 504-506.	14.3	6
133	OdDHL Inhibits T Cell Subset Differentiation and Delays Diabetes Onset in NOD Mice. Vaccine Journal, 2011, 18, 1213-1220.	3.1	6
134	Factors Involved in the Pathogenesis of Neutrophilic Vasculitis in MRL/Mp-lpr/lprMice: A Model for Human Microscopic Angiitis. Autoimmunity, 1999, 31, 133-145.	2.6	5
135	A SNP in the immunoregulatory molecule CTLA-4 controls mRNA splicing in vivo but does not alter diabetes susceptibility in the NOD mouse. Diabetes, 2015, 65, db151175.	0.6	5
136	Can helminth antigens be exploited therapeutically to downregulate pathological Th1 responses?. Current Opinion in Investigational Drugs, 2004, 5, 1184-91.	2.3	5
137	Con-A-induced suppressor activity of lymphocytes distinguished by the presence or absence of the Fc receptor. Cellular Immunology, 1979, 47, 90-99.	3.0	4
138	Autoimmune disorders. Trends in Immunology, 1986, 7, 325-326.	7.5	4
139	Idiotypic interactions in autoimmunity: an editorial overview. Journal of Autoimmunity, 1988, 1, 3-6.	6.5	4
140	Autoimmune Disease: Gadding around the beta cell. Current Biology, 1994, 4, 158-160.	3.9	4
141	Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Journal of Endocrinological Investigation, 1994, 17, 586-593.	3.3	4
142	Current Molecular Approaches to Experimental Thyroid Autoimmunity. Sub-Cellular Biochemistry, 1988, 12, 307-333.	2.4	4
143	Inhibition of Phosphoinositide 3-Kinase p110delta Does Not Affect T Cell Driven Development of Type 1 Diabetes Despite Significant Effects on Cytokine Production. PLoS ONE, 2016, 11, e0146516.	2.5	4
144	Antibody of Restricted Heterogeneity secreted by Spleen Fragments. Nature: New Biology, 1972, 240, 152-154.	4.5	3

#	Article	IF	CITATIONS
145	The differential effect of 2-deoxyguanosine on concanavalin A-induced suppressor and cytotoxic activity. Cellular Immunology, 1983, 81, 99-104.	3.0	3
146	Breast may well be best. Nature, 1992, 359, 194-195.	27.8	3
147	Autoimmunity. Current Opinion in Immunology, 2004, 16, 738-740.	5.5	3
148	Mechanisms of autoimmune thyroid disease. Drug Discovery Today Disease Mechanisms, 2004, 1, 337-344.	0.8	3
149	Comment on: Tritt et al. (2007) Functional Waning of Naturally Occurring CD4+ Regulatory T-cells Contributes to the Onset of Autoimmune Diabetes: <i>Diabetes</i> 57:113–123, 2007. Diabetes, 2008, 57, e6-e6.	0.6	3
150	Characterisation of CD8 monoclonal antibody-induced protection from diabetes in NOD mice. Autoimmunity, 2005, 38, 597-604.	2.6	2
151	Regulation unmasked by activation. Nature Immunology, 2013, 14, 696-697.	14.5	2
152	Genetic Analysis of Type 1 Diabetes: Embryonic Stem Cells as New Tools to Unlock Biological Mechanisms in Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 137-147.	1.3	2
153	Evidence that intracellular and secreted light chains of a mouse IgG2a plasmacytoma are monomers carrying a free thiol group. Immunochemistry, 1977, 14, 627-631.	1.2	1
154	The 1st International standard for transforming growth factor-β3 (TGF-β3). Journal of Immunological Methods, 2012, 380, 1-9.	1.4	1
155	Autoimmune thyroid disease induced by thyroglobulin and lipopolysaccharide is inhibited by soluble TNF receptor type I. European Journal of Immunology, 2002, 32, 1021-1028.	2.9	1
156	The Role of Antigen in Autoimmune Responses with Special Reference to Changes in Carbohydrate Structure of IgG in Rheumatoid Arthritis. , 1989, , 3-10.		1
157	Manipulation of Idiotype Networks in Autoimmunity. Novartis Foundation Symposium, 1987, 129, 209-222.	1.1	1
158	Action of Con A-induced suppressor cells on a B hybridoma line. Cellular Immunology, 1981, 61, 300-306.	3.0	0
159	The nature of autoantigens. Memorias Do Instituto Oswaldo Cruz, 1987, 82, 105-109.	1.6	0
160	Animal models of autoimmune endocrine disease and their uses in developing new methods of intervention. Bailliere's Clinical Endocrinology and Metabolism, 1995, 9, 175-198.	1.0	0
161	Genetic Diversity in NK and NKT Cells. , 2005, , 110-117.		0
162	17-P013 Consequences and applications of suppression of Erk signalling in early mouse embryos. Mechanisms of Development, 2009, 126, S274.	1.7	0

#	Article	IF	CITATIONS
163	Factors Involved in Onset of Type 1 Diabetes. Molecular and Integrative Toxicology, 2012, , 153-170.	0.5	0
164	Neuroendrocrine effects on autoimmunity. Nature Reviews Immunology, 2017, 17, 405-405.	22.7	0
165	The hygiene hypothesis and Type 1 diabetes. , 2009, , 179-188.		0
166	Effect of MHC Class II Encoding Transgenes on Autoimmunity in Nonobese Diabetic Mice. , 1994, , 183-190.		0
167	Experimental models of autoimmune thyroid disease. , 1996, , 1775-1785.		0
168	The Effect of MHC Encoding Transgenes on IDDM in NOD Mice. , 1996, , 82-88.		0