Zhaona Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773554/publications.pdf

Version: 2024-02-01

		257357	168321	
72	2,862	24	53	
papers	citations	h-index	g-index	
70	70	72	2202	
73	73	73	3293	

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Graded strain-enhanced pyro-phototronic photodetector with a broad and plateau band. Nano Energy, 2022, 97, 107163.	8.2	14
2	Tunable plasmonic bound states in the continuum in the visible range. Physical Review B, 2021, 103, .	1.1	43
3	Programmable Random Lasing Pulses Based on Waveguideâ€Assisted Random Scattering Feedback. Laser and Photonics Reviews, 2021, 15, 2000506.	4.4	24
4	Second Harmonic Generation Covering the Entire Visible Range from a 2D Material–Plasmon Hybrid Metasurface. Advanced Optical Materials, 2021, 9, 2100625.	3.6	22
5	A ring-shaped random laser in momentum space. Nanoscale, 2020, 12, 3166-3173.	2.8	34
6	Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting. Applied Surface Science, 2020, 505, 144520.	3.1	20
7	A humidity-tailored film random laser. Organic Electronics, 2020, 86, 105923.	1.4	11
8	Enhanced performances of p-si/n-ZnO self-powered photodetector by interface state modification and pyro-phototronic effect. Nano Energy, 2020, 71, 104630.	8.2	64
9	Chromaticity-tunable white random lasing based on a microfluidic channel. Optics Express, 2020, 28, 13576.	1.7	26
10	Line Width-Tunable Random Laser Based on Manipulating Plasmonic Scattering. ACS Photonics, 2019, 6, 2245-2251.	3.2	30
11	Flexible and smart fibers decorated with Ag nanoflowers for highly active surfaceâ€enhanced Raman scattering detection. Journal of Raman Spectroscopy, 2019, 50, 1468-1476.	1.2	14
12	ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector. Journal Physics D: Applied Physics, 2019, 52, 223001.	1.3	46
13	Ultrastable and Lowâ€Threshold Random Lasing from Narrowâ€Bandwidthâ€Emission Triangular Carbon Quantum Dots. Advanced Optical Materials, 2019, 7, 1801202.	3.6	67
14	Comprehensive Pyroâ€Phototronic Effect Enhanced Ultraviolet Detector with ZnO/Ag Schottky Junction. Advanced Functional Materials, 2019, 29, 1807111.	7.8	95
15	Omnidirectional polarization beam splitter for white light. Optics Express, 2019, 27, 7673.	1.7	8
16	Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Advanced Materials Technologies, 2018, 3, 1700317.	3.0	98
17	Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy, 2018, 54, 429-436.	8.2	52
18	Resonance energy transfer process in nanogap-based dual-color random lasing. Applied Physics Letters, 2017, 110, .	1.5	16

#	Article	IF	CITATIONS
19	Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering. Nanoscale, 2017, 9, 15390-15396.	2.8	25
20	Temporal profiles for measuring threshold of random lasers pumped by ns pulses. Scientific Reports, 2017, 7, 5325.	1.6	10
21	Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region. Nanophotonics, 2017, 6, 1151-1160.	2.9	43
22	Dissolvable and Recyclable Random Lasers. ACS Nano, 2017, 11, 7600-7607.	7.3	41
23	Ultrafast Response pâ€Si/nâ€ZnO Heterojunction Ultraviolet Detector Based on Pyroâ€Phototronic Effect. Advanced Materials, 2016, 28, 6880-6886.	11.1	176
24	Hierarchical forest-like photoelectrodes with ZnO nanoleaves on a metal dendrite array. Journal of Materials Chemistry A, 2016, 4, 9816-9821.	5.2	15
25	Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Research, 2016, 9, 3695-3704.	5.8	87
26	Piezoâ€phototronic Boolean Logic and Computation Using Photon and Strain Dualâ€Gated Nanowire Transistors. Advanced Materials, 2015, 27, 940-947.	11.1	46
27	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	11.1	487
28	Piezoâ€Phototronic UV/Visible Photosensing with Opticalâ€Fiber–Nanowire Hybridized Structures. Advanced Materials, 2015, 27, 1553-1560.	11.1	60
29	Stretchableâ€Rubberâ€Based Triboelectric Nanogenerator and Its Application as Selfâ€Powered Body Motion Sensors. Advanced Functional Materials, 2015, 25, 3688-3696.	7.8	320
30	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401.	5.8	261
31	Single-excitation dual-color coherent lasing by tuning resonance energy transfer processes in porous structured nanowires. Nanoscale, 2015, 7, 15091-15098.	2.8	19
32	Optimizing Performance of Silicon-Based p–n Junction Photodetectors by the Piezo-Phototronic Effect. ACS Nano, 2014, 8, 12866-12873.	7.3	120
33	Cascade-pumped random lasers with coherent emission formed by Ag–Au porous nanowires. Optics Letters, 2014, 39, 5.	1.7	23
34	Random Lasing with a High Quality Factor over the Whole Visible Range Based on Cascade Energy Transfer. Advanced Optical Materials, 2014, 2, 88-93.	3.6	57
35	Programmable Writing of Graphene Oxide/Reduced Graphene Oxide Fibers for Sensible Networks with <i>in Situ</i> Welded Junctions. ACS Nano, 2014, 8, 4325-4333.	7.3	56
36	Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Physics Letters, 2014, 11, 095002.	0.6	17

#	Article	IF	Citations
37	Carpet anti-cloak based on transformation optics. Chinese Optics Letters, 2014, 12, 121601.	1.3	2
38	High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103, .	1.5	42
39	Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials. Laser Physics Letters, 2013, 10, 055006.	0.6	15
40	Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2523.	0.9	21
41	Localization of electromagnetic wave with continuous eigenmodes in free space cavities of cylindrical or arbitrary shapes. Optics Express, 2013, 21, 30746.	1.7	2
42	Cascade pumped random lasers with coherent emission formed by Ag-Au porous nanowires. , 2013, , .		0
43	General laws of reflection and refraction for metasurface with phase discontinuity. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 104201.	0.2	21
44	Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9, 570-574.	0.6	1
45	Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin. Applied Physics B: Lasers and Optics, 2012, 109, 15-18.	1.1	3
46	Defect mode of one-dimensional holographic photonic crystals modulated by the intensity ratio of two constructive beams. Applied Physics B: Lasers and Optics, 2012, 107, 361-367.	1.1	1
47	A 2-dimensional gradual period photonic heterostructure possessing omnidirectional band gap in visible range made by holography. Optics Communications, 2012, 285, 1248-1252.	1.0	0
48	Wavelength Variation of a Random Laser with Concentration of a Gain Material. Chinese Physics Letters, 2011, 28, 104204.	1.3	3
49	Band-edge oscillations of the diffraction spectrum of a volume hologram investigated by the air-doping model. Applied Optics, 2011, 50, 2049.	2.1	2
50	Electromagnetic detection of a perfect cloak based on the material nonlinear response. Applied Physics B: Lasers and Optics, 2011, 105, 225-229.	1.1	1
51	Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A, 2010, 82, .	1.0	39
52	Blowup Properties for a Semilinear Reaction-Diffusion System with Nonlinear Nonlocal Boundary Conditions. Abstract and Applied Analysis, 2010, 2010, 1-17.	0.3	9
53	Electromagnetic localization based on transformation optics. Optics Express, 2010, 18, 11891.	1.7	8
54	Doping Defects in Two-Dimensional Holographic Photonic Crystals Using a Continuous-Wave Visible Laser. Chinese Physics Letters, 2009, 26, 054201.	1.3	1

#	Article	IF	Citations
55	Analytical Solution of Band Gaps in 2-D Photonic Crystals Made by Multi-Beam Interference. IEEE Journal of Quantum Electronics, 2009, 45, 1297-1301.	1.0	1
56	Guided Resonances in Periodic Dielectric Waveguides. Journal of Lightwave Technology, 2009, 27, 4544-4547.	2.7	9
57	Improvements of Dielectric Columniation Triangular Lattice for Obtaining Absolute Band Gap in Visible Range. IEEE Photonics Technology Letters, 2009, 21, 1849-1851.	1.3	1
58	Narrow Band Longitude Mode Selector of Laser Based on Conjugated Photonic Crystals. Chinese Physics Letters, 2009, 26, 104204.	1.3	2
59	Simultaneous excitation of cavity resonance and surface plasmon resonance in Ag/Al2O3/Ag layer structure. Applied Physics B: Lasers and Optics, 2008, 92, 585-588.	1.1	4
60	High transmission with narrow bandwidth of metallic defect mode in 1-D dielectric photonic crystals. Applied Physics B: Lasers and Optics, 2008, 93, 853-857.	1.1	2
61	Complete Band Gaps in the Visible Range Achieved by a Lowâ€Refractiveâ€Index Material. Advanced Materials, 2008, 20, 2337-2340.	11.1	25
62	Achieving Complete Bandgaps by Self-Similar Spherical Structure Using Low Refractive Index Materials. IEEE Photonics Technology Letters, 2008, 20, 1066-1068.	1.3	0
63	The influence of asymmetric expansion properties and random fluctuation on the bandwidth of a hologram. Journal of Optics, 2008, 10, 085205.	1.5	3
64	A Dnv point group structure possessing complete band gap based on gradual heterostructure and self-simulating sphere. Applied Physics Letters, 2008, 93, 201902.	1.5	7
65	Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction. Physical Review B, 2007, 76, .	1.1	13
66	Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2416.	0.9	10
67	A few points on omnidirectional band gaps in one-dimensional photonic crystals. Applied Physics B: Lasers and Optics, 2007, 86, 473-476.	1.1	22
68	Investigation of a peculiar bifurcation phenomenon in diffraction spectra of volume holograms. Optics Letters, 2006, 31, 3270.	1.7	11
69	Special kind of photonic crystals with omnidirectional bandgaps. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2601.	0.9	9
70	Effect of refractive index of environment medium on electromagnetic mode density in photonic band gaps. Applied Physics B: Lasers and Optics, 2006, 82, 549-553.	1.1	5
71	Characteristics of band structures in 1D photonic crystals containing alternate left–right handed materials. Solid State Communications, 2005, 136, 495-498.	0.9	9
72	The rule for broadening of band-gaps in biperiodic photonic crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 324, 489-493.	0.9	11