Domenico De Fazio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773311/publications.pdf Version: 2024-02-01

DOMENICO DE ENZIO

#	Article	IF	CITATIONS
1	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
2	High Responsivity, Large-Area Graphene/MoS ₂ Flexible Photodetectors. ACS Nano, 2016, 10, 8252-8262.	7.3	275
3	Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS ₂ . ACS Nano, 2016, 10, 1182-1188.	7.3	272
4	On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. Nano Letters, 2016, 16, 3005-3013.	4.5	265
5	Broadband, electrically tunable third-harmonic generation in graphene. Nature Nanotechnology, 2018, 13, 583-588.	15.6	211
6	Charge-tuneable biexciton complexes in monolayer WSe2. Nature Communications, 2018, 9, 3721.	5.8	185
7	Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nature Communications, 2017, 8, 14311.	5.8	151
8	High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano, 2019, 13, 8926-8935.	7.3	132
9	Vertically Illuminated, Resonant Cavity Enhanced, Graphene–Silicon Schottky Photodetectors. ACS Nano, 2017, 11, 10955-10963.	7.3	101
10	Ultrafast valley relaxation dynamics in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2by nonequilibrium optical techniques. Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	า l:m๓.ฆ <td>ml::189ub></td>	ml: :189 ub>
11	Intravalley Spin–Flip Relaxation Dynamics in Single-Layer WS ₂ . Nano Letters, 2018, 18, 6882-6891.	4.5	82
12	p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Nature Communications, 2017, 8, 14024.	5.8	79
13	Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition. Physical Review B, 2014, 90, .	1.1	70
14	Raman spectroscopy of graphene under ultrafast laser excitation. Nature Communications, 2018, 9, 308.	5.8	70
15	Multi-Valley Superconductivity in Ion-Gated MoS ₂ Layers. Nano Letters, 2018, 18, 4821-4830.	4.5	58
16	Layered material platform for surface plasmon resonance biosensing. Scientific Reports, 2019, 9, 20286.	1.6	55
17	Ultrafast pseudospin dynamics in graphene. Physical Review B, 2015, 92, .	1.1	48
18	Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. Nature Communications, 2019, 10, 3658.	5.8	43

DOMENICO DE FAZIO

#	Article	IF	CITATIONS
19	Graphene–Quantum Dot Hybrid Photodetectors with Low Dark-Current Readout. ACS Nano, 2020, 14, 11897-11905.	7.3	39
20	Superconducting-nanowire single-photon-detector linear array. Applied Physics Letters, 2013, 103, 142602.	1.5	37
21	Niobium diselenide superconducting photodetectors. Applied Physics Letters, 2019, 114, .	1.5	28
22	Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Letters, 2021, 21, 2709-2718.	4.5	24
23	Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano, 2021, 15, 17966-17976.	7.3	21
24	Optoelectronic mixing with high-frequency graphene transistors. Nature Communications, 2021, 12, 2728.	5.8	18
25	Graphene overcoats for ultra-high storage density magnetic media. Nature Communications, 2021, 12, 2854.	5.8	15
26	Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture. Optics Express, 2014, 22, 24574.	1.7	12
27	Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with Onâ€Chip Gas Encapsulation. Small, 2018, 14, e1801599.	5.2	7
28	Tunable broadband light emission from graphene. 2D Materials, 2021, 8, 035026.	2.0	5
29	Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS2. , 2019, , .		3
30	High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene. Nature Communications, 2021, 12, 4307.	5.8	2
31	Gate tuneable ultrafast charge transfer in graphene/MoS2 heterostructures. , 2017, , .		1
32	High Responsivity Silicon-Graphene Schottky Avalanche Photodetectors for Visible and Telecom Wavelengths. , 2015, , .		0
33	Intervalley scattering in monolayer MoS2probed by non-equilibrium optical techniques. , 2015, , .		0
34	Phonon anomalies in Graphene induced by highly excited charge carriers. , 2017, , .		0
35	Ultrafast spin/valley decay processes in monolayer WS2. , 2017, , .		0
36	Graphene electrically tuneable third harmonic generation. , 2018, , .		0

#	Article	IF	CITATIONS
37	Raman spectroscopy of graphene under ultrafast laser excitation. EPJ Web of Conferences, 2019, 205, 05003.	0.1	0
38	Real-time observation of the intravalley spin-flip process in single-layer WS2. EPJ Web of Conferences, 2019, 205, 05012.	0.1	0