
Julio A Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infectious Diseases, The, 2013, 13, 416-425.	4.6	261
2	Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. Journal of Infection, 2015, 71, 544-552.	1.7	185
3	The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Review of Vaccines, 2019, 18, 15-30.	2.0	136
4	The Global Meningococcal Initiative: Recommendations for reducing the global burden of meningococcal disease. Vaccine, 2011, 29, 3363-3371.	1.7	105
5	Target Gene Sequencing To Characterize the Penicillin G Susceptibility of Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2007, 51, 2784-2792.	1.4	103
6	Effectiveness of meningococcal serogroup C vaccine programmes. Vaccine, 2013, 31, 4477-4486.	1.7	80
7	A generic mechanism in <i>Neisseria meningitidis</i> for enhanced resistance against bactericidal antibodies. Journal of Experimental Medicine, 2008, 205, 1423-1434.	4.2	78
8	Multicenter Validation of a Multiplex PCR Assay for Differentiating the Major Listeria monocytogenes Serovars 1/2a, 1/2b, 1/2c, and 4b: Toward an International Standard. Journal of Food Protection, 2005, 68, 2648-2650.	0.8	73
9	Emergence of High Level Azithromycin-Resistant Neisseria gonorrhoeae Strain Isolated in Argentina. Sexually Transmitted Diseases, 2009, 36, 787-788.	0.8	70
10	Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine, 2019, 37, 991-1000.	1.7	64
11	Ecological separation and genetic isolation of Neisseria gonorrhoeae and Neisseria meningitidis. Current Biology, 1993, 3, 567-572.	1.8	63
12	Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines. Vaccine Journal, 2012, 19, 1609-1617.	3.2	59
13	Interlaboratory Comparison of Agar Dilution and Etest Methods for Determining the MICs of Antibiotics Used in Management of Neisseria meningitidis Infections. Antimicrobial Agents and Chemotherapy, 2003, 47, 3430-3434.	1.4	56
14	Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. MBio, 2018, 9, .	1.8	53
15	Correlation between Alterations of the Penicillin-binding Protein 2 and Modifications of the Peptidoglycan Structure in Neisseria meningitidis with Reduced Susceptibility to Penicillin G. Journal of Biological Chemistry, 2003, 278, 31529-31535.	1.6	52
16	New Mutation in 23S rRNA Gene Associated with High Level of Azithromycin Resistance in <i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 1652-1653.	1.4	51
17	The current situation of meningococcal disease in Latin America and updated Global Meningococcal Initiative (GMI) recommendations. Vaccine, 2015, 33, 6529-6536.	1.7	49
18	Capsule Switching among C:2b:P1.2,5 Meningococcal Epidemic Strains after Mass Immunization Campaign, Spain. Emerging Infectious Diseases, 2002, 8, 1512-1514.	2.0	46

Julio A Vazquez

#	Article	IF	CITATIONS
19	W135 Invasive Meningococcal Strains Spreading in South America: Significant Increase in Incidence Rate in Argentina. Journal of Clinical Microbiology, 2009, 47, 1979-1980.	1.8	41
20	Predicted Strain Coverage of a New Meningococcal Multicomponent Vaccine (4CMenB) in Spain: Analysis of the Differences with Other European Countries. PLoS ONE, 2016, 11, e0150721.	1.1	41
21	Meningococcal disease in the Asia-Pacific region: Findings and recommendations from the Global Meningococcal Initiative. Vaccine, 2016, 34, 5855-5862.	1.7	40
22	Emergence of Neisseria meningitidis with decreased susceptibility to ciprofloxacin in Argentina. Journal of Antimicrobial Chemotherapy, 2005, 55, 596-597.	1.3	39
23	Complete Sequence of a β-Lactamase-Encoding Plasmid in Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2000, 44, 210-212.	1.4	37
24	Multicenter Study for Defining the Breakpoint for Rifampin Resistance in <i>Neisseria meningitidis</i> by <i>rpoB</i> Sequencing. Antimicrobial Agents and Chemotherapy, 2010, 54, 3651-3658.	1.4	37
25	Target Gene Sequencing To Define the Susceptibility of Neisseria meningitidis to Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2013, 57, 1961-1964.	1.4	37
26	A Multi-country Evaluation of Neisseria meningitidis Serogroup B Factor H–Binding Proteins and Implications for Vaccine Coverage in Different Age Groups. Pediatric Infectious Disease Journal, 2013, 32, 1096-1101.	1.1	36
27	Fluoroquinolone resistance in Neisseria meningitidis in Spain. Journal of Antimicrobial Chemotherapy, 2007, 61, 286-290.	1.3	35
28	Antibiotic resistant meningococci in Europe: Any need to act?. FEMS Microbiology Reviews, 2007, 31, 64-70.	3.9	27
29	Early evidence of expanding W ST-11 CC meningococcal incidence in Spain. Journal of Infection, 2016, 73, 296-297.	1.7	27
30	Molecular characterization of invasive serogroup Y Neisseria meningitidis strains isolated in the Latin America region. Journal of Infection, 2009, 59, 104-114.	1.7	26
31	Antigenic and/or phase variation of PorA protein in non-subtypable Neisseria meningitidis strains isolated in Spain. Journal of Medical Microbiology, 2004, 53, 515-518.	0.7	24
32	Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. Npj Vaccines, 2021, 6, 130.	2.9	24
33	The resistance of Neisseria meningitidis to the antimicrobial agents: an issue still in evolution. Reviews in Medical Microbiology, 2001, 12, 39-45.	0.4	23
34	B:2a:P1.5 Meningococcal Strains Likely Arisen from Capsular Switching Event Still Spreading in Spain. Journal of Clinical Microbiology, 2009, 47, 463-465.	1.8	20
35	Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development. Vaccine Journal, 2014, 21, 847-853.	3.2	19
36	Resistance testing of meningococci: the recommendations of the European Monitoring Group on Meningococci: Table 1. FEMS Microbiology Reviews, 2007, 31, 97-100.	3.9	18

Julio A Vazquez

#	Article	IF	CITATIONS
37	Antimicrobial susceptibility of Neisseria meningitidis strains isolated from meningitis cases in Brazil from 2006 to 2008. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2011, 29, 85-89.	0.3	16
38	Sequencing of Neisseria meningitidis penA Gene: the Key to Success in Defining Penicillin G Breakpoints. Antimicrobial Agents and Chemotherapy, 2004, 48, 358-359.	1.4	13
39	Interlaboratory Comparison of PCR-Based Methods for Detection of Penicillin G Susceptibility in Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2006, 50, 887-892.	1.4	11
40	Changes in the evolution of meningococcal disease, 2001–2008, Catalonia (Spain). Vaccine, 2009, 27, 3496-3498.	1.7	11
41	Dynamics of thepenAGene in Serogroup C Meningococcal Strains. Journal of Infectious Diseases, 2003, 187, 1010-1014.	1.9	9
42	Deletion of the Correia element in the mtr gene complex of Neisseria meningitidis. Journal of Medical Microbiology, 2010, 59, 1055-1060.	0.7	7
43	Optimizing strategies for meningococcal C disease vaccination in Valencia (Spain). BMC Infectious Diseases, 2014, 14, 280.	1.3	7
44	Molecular Approach for the Study of Penicillin Resistance In Neisseria meningitidis. , 2001, 67, 107-119.		6
45	Nalidixic Acid Disk for Laboratory Detection of Ciprofloxacin Resistance in Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2009, 53, 796-797.	1.4	6
46	Molecular characterization of invasive serogroup B Neisseria meningitidis isolates from Spain during 2015–2018: Evolution of the vaccine antigen factor H binding protein (FHbp). Journal of Infection, 2021, 82, 37-44.	1.7	6
47	Potential impact of the 4CMenB vaccine on oropharyngeal carriage of Neisseria meningitidis. Journal of Infection, 2017, 75, 511-520.	1.7	4
48	An outbreak of invasive meningococcal disease probably associated with an indoor swimming pool. Clinical Microbiology and Infection, 1998, 4, 349-350.	2.8	2
49	PorB2/3 Protein Hybrid inNeisseria meningitidis. Emerging Infectious Diseases, 2008, 14, 688-689.	2.0	0

50 Genus Neisseria. , 2021, , .

0