
Thorsten Kessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
2	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
3	Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.	1.2	723
4	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	9.4	571
5	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	9.4	552
6	Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	13.9	427
7	Inactivating Mutations in <i>NPC1L1</i> and Protection from Coronary Heart Disease. New England Journal of Medicine, 2014, 371, 2072-2082.	13.9	386
8	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	1.0	302
9	A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovascular Research, 2018, 114, 1241-1257.	1.8	217
10	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
11	Phenotypic Characterization of GeneticallyÂLowered Human Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2016, 68, 2761-2772.	1.2	186
12	Predictors of Permanent Pacemaker Implantations and New-Onset Conduction Abnormalities With the SAPIEN 3 Balloon-Expandable Transcatheter Heart Valve. JACC: Cardiovascular Interventions, 2016, 9, 244-254.	1.1	149
13	Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2017, 317, 937.	3.8	148
14	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	1.2	147
15	The impact of genomeâ€wide association studies onÂthe pathophysiology and therapy of cardiovascular disease. EMBO Molecular Medicine, 2016, 8, 688-701.	3.3	141
16	ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling Through Cleavage of Thrombospondin-1. Circulation, 2015, 131, 1191-1201.	1.6	125
17	Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. Journal of the American College of Cardiology, 2019, 73, 2990-3002.	1.2	117
18	Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2015, 3, 243-253.	5.5	115

#	Article	IF	CITATIONS
19	Functional Characterization of the <i>GUCY1A3</i> Coronary Artery Disease Risk Locus. Circulation, 2017, 136, 476-489.	1.6	84
20	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
21	Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. European Journal of Human Genetics, 2016, 24, 191-197.	1.4	70
22	Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease. Circulation Research, 2017, 121, 81-88.	2.0	68
23	Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurology: Genetics, 2015, 1, e10.	0.9	61
24	Monocytes and macrophages in cardiac injury and repair. Journal of Thoracic Disease, 2017, 9, S30-S35.	0.6	58
25	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	1.0	58
26	Genetics of Coronary Artery Disease and Myocardial Infarction - 2013. Current Cardiology Reports, 2013, 15, 368.	1.3	51
27	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
28	Outcomes After Transcatheter AorticÂValve Replacement Using aÂNovelÂBalloon-Expandable TranscatheterÂHeartÂValve. JACC: Cardiovascular Interventions, 2015, 8, 1809-1816.	1.1	50
29	Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic To Translational Science, 2021, 6, 610-623.	1.9	47
30	Interleukin-1β suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovascular Research, 2022, 118, 2778-2791.	1.8	47
31	Genetics of coronary artery disease in the light of genome-wide association studies. Clinical Research in Cardiology, 2018, 107, 2-9.	1.5	46
32	Dietary nitrate load lowers blood pressure and renal resistive index in patients with chronic kidney disease: A pilot study. Nitric Oxide - Biology and Chemistry, 2017, 64, 7-15.	1.2	44
33	Prognostic impact of anemia and iron-deficiency anemia in a contemporary cohort of patients undergoing transcatheter aortic valve implantation. International Journal of Cardiology, 2017, 244, 93-99.	0.8	40
34	Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression. Molecular and Cellular Proteomics, 2018, 17, 321-334.	2.5	40
35	Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell–platelet–monocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5556-E5565.	3.3	38
36	Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. Journal of Translational Medicine, 2016, 14, 120.	1.8	36

#	Article	IF	CITATIONS
37	Genetic alterations in the NO-cGMP pathway and cardiovascular risk. Nitric Oxide - Biology and Chemistry, 2018, 76, 105-112.	1.2	34
38	Ly6C high Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1640-1645.	1.1	33
39	Genetically modulated educational attainment and coronary disease risk. European Heart Journal, 2019, 40, 2413-2420.	1.0	32
40	Knock-out of nexilin in mice leads to dilated cardiomyopathy and endomyocardial fibroelastosis. Basic Research in Cardiology, 2016, 111, 6.	2.5	27
41	Status of Early-Career Academic Cardiology. Journal of the American College of Cardiology, 2017, 70, 2290-2303.	1.2	27
42	Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation. Atherosclerosis, 2017, 267, 39-48.	0.4	26
43	Genetic variation at the coronary artery disease risk locus <i>GUCY1A3</i> modifies cardiovascular disease prevention effects of aspirin. European Heart Journal, 2019, 40, 3385-3392.	1.0	25
44	Functional investigation of the coronary artery disease gene SVEP1. Basic Research in Cardiology, 2020, 115, 67.	2.5	25
45	Antihypertensive drugs in COVID-19 infection. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, 6, 415-416.	1.4	24
46	Where the Action Is—Leukocyte Recruitment in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2021, 8, 813984.	1.1	24
47	Functional Interaction of Osteogenic Transcription Factors Runx2 and Vdr in Transcriptional Regulation of Opn during Soft Tissue Calcification. American Journal of Pathology, 2013, 183, 60-68.	1.9	22
48	Role of sGC-dependent NO signalling and myocardial infarction risk. Journal of Molecular Medicine, 2015, 93, 383-394.	1.7	22
49	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	2.5	22
50	Stimulators of the soluble guanylyl cyclase: promising functional insights from rare coding atherosclerosis-related GUCY1A3 variants. Basic Research in Cardiology, 2016, 111, 51.	2.5	20
51	Impact of Acute and Chronic Psychosocial Stress on Vascular Inflammation. Antioxidants and Redox Signaling, 2021, 35, 1531-1550.	2.5	20
52	TRPV6 alleles do not influence prostate cancer progression. BMC Cancer, 2009, 9, 380.	1.1	18
53	Functional association of a CD40 gene single-nucleotide polymorphism with the pathogenesis of coronary heart disease. Cardiovascular Research, 2020, 116, 1214-1225.	1.8	18
54	A genomic exploration identifies mechanisms that may explain adverse cardiovascular effects of COX-2 inhibitors. Scientific Reports, 2017, 7, 10252.	1.6	16

#	Article	IF	CITATIONS
55	Colchicine Impacts Leukocyte Trafficking in Atherosclerosis and Reduces Vascular Inflammation. Frontiers in Immunology, 0, 13, .	2.2	16
56	Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention. Cardiovascular Research, 2019, 115, 1512-1518.	1.8	15
57	cGMP Signaling in Cardiovascular Diseases. Journal of Cardiovascular Pharmacology, 2020, 75, 516-525.	0.8	15
58	KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern. JCI Insight, 2019, 4, .	2.3	15
59	<i>Cis</i> -epistasis at the <i>LPA</i> locus and risk of cardiovascular diseases. Cardiovascular Research, 2022, 118, 1088-1102.	1.8	14
60	Etidronate prevents dystrophic cardiac calcification by inhibiting macrophage aggregation. Scientific Reports, 2018, 8, 5812.	1.6	13
61	Time-of-day at symptom onset was not associated with infarct size and long-term prognosis in patients with ST-segment elevation myocardial infarction. Journal of Translational Medicine, 2019, 17, 180.	1.8	12
62	Inhibitors of the renin–angiotensin system and SARS-CoV-2 infection. Herz, 2020, 45, 323-324.	0.4	11
63	A proteomic atlas of the neointima identifies novel druggable targets for preventive therapy. European Heart Journal, 2021, 42, 1773-1785.	1.0	11
64	Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovascular Research, 2023, 119, 857-866.	1.8	11
65	Conduction Abnormalities and Pacemaker Implantations After SAPIEN 3 Vs SAPIEN XT Prosthesis Aortic Valve Implantation. Revista Espanola De Cardiologia (English Ed), 2016, 69, 141-148.	0.4	10
66	Hospital admissions with acute coronary syndromes during the COVID-19 pandemic in German cardiac care units. Cardiovascular Research, 2020, 116, 1800-1801.	1.8	10
67	Effects of the coronary artery disease associated LPA and 9p21 loci on risk of aortic valve stenosis. International Journal of Cardiology, 2019, 276, 212-217.	0.8	9
68	Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. European Journal of Epidemiology, 2020, 35, 685-697.	2.5	9
69	Clinical validation of genetic markers for improved risk estimation. European Journal of Preventive Cardiology, 2012, 19, 25-32.	0.8	8
70	Shared Genetic Aetiology of Coronary Artery Disease and Atherosclerotic Stroke—2015. Current Atherosclerosis Reports, 2015, 17, 498.	2.0	8
71	Classification of ADAMTS binding sites: The first step toward selective ADAMTS7 inhibitors. Biochemical and Biophysical Research Communications, 2016, 471, 380-385.	1.0	7
72	Ten-year clinical outcomes of polymer-free versus durable polymer new-generation drug-eluting stent in patients with coronary artery disease with and without diabetes mellitus. Clinical Research in Cardiology, 2021, 110, 1586-1598.	1.5	7

#	Article	IF	CITATIONS
73	Genetics of Recovery After Stroke. Circulation Research, 2019, 124, 18-20.	2.0	6
74	Novel Approaches to Fine-Tune Therapeutic Targeting of Platelets in Atherosclerosis: A Critical Appraisal. Thrombosis and Haemostasis, 2020, 120, 1492-1504.	1.8	6
75	Should We Use Genetic Scores in the Determination of Treatment Strategies to Control Dyslipidemias?. Current Cardiology Reports, 2020, 22, 146.	1.3	6
76	Identification of a Functional <i>PDE5A</i> Variant at the Chromosome 4q27 Coronary Artery Disease Locus in an Extended Myocardial Infarction Family. Circulation, 2021, 144, 662-665.	1.6	6
77	Genetics of coronary artery disease: Short people at risk?. Expert Review of Cardiovascular Therapy, 2015, 13, 1169-1172.	0.6	5
78	Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk. PLoS ONE, 2017, 12, e0182999.	1.1	5
79	Investigating the impact of a mutation in PDE5A on myocardial infarction. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	3
80	Improvement in Risk Stratification in Transcatheter Aortic Valve Implantation Using a Combination of the Tumor Marker CA125 and the Logistic EuroSCORE. Revista Espanola De Cardiologia (English Ed), 2017, 70, 186-193.	0.4	3
81	Genomic Strategies Toward Identification of Novel Therapeutic Targets. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	3
82	Prognostic value of haemoglobin drop in patients with acute coronary syndromes. European Journal of Clinical Investigation, 2021, 51, e13670.	1.7	3
83	Functional evaluation of GUCY1A3 mutations associated with myocardial infarction risk. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	1
84	Influence of marital status in patients undergoing transcatheter aortic valve implantation. Journal of Thoracic Disease, 2019, 11, 1888-1895.	0.6	1
85	Angiographic performance of everolimusâ€eluting stents for the treatment of coronary inâ€stent restenosis in daily practice. Catheterization and Cardiovascular Interventions, 2020, 98, 857-862.	0.7	1
86	SARS-CoV-2 Infection in Asymptomatic Patients Hospitalized for Cardiac Emergencies: Implications for Patient Management. Frontiers in Cardiovascular Medicine, 2020, 7, 599299.	1.1	1
87	The influence of genetic risk and lifestyle on the development of coronary artery disease. Journal of Public Health and Emergency, 0, 1, 40-40.	4.4	0
88	Genomics to Predict Risk of Coronary Artery Disease. , 2018, , 127-146.		0
89	Letter by Kessler et al Regarding Article, "Comparative Efficacy and Safety of Oral P2Y12 Inhibitors in Acute Coronary Syndrome: Network Meta-Analysis of 52 816 Patients From 12 Randomized Trials― Circulation, 2021, 143, e230-e231.	1.6	0