Agnieszka Klonowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics, 2020, 21, 214.	2.8	18
2	A leguminous species exploiting alpha- and beta-rhizobia for adaptation to ultramafic and volcano-sedimentary soils: an endemic Acacia spirorbis model from New Caledonia. FEMS Microbiology Ecology, 2019, 95, .	2.7	7
3	Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics. 2018, 19, 105.	2.8	32
4	High-quality draft genome sequence of Rhizobium mesoamericanum strain STM6155, a Mimosa pudica microsymbiont from New Caledonia. Standards in Genomic Sciences, 2017, 12, 7.	1.5	2
5	Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
6	Genetic and Genomic Diversity Studies of Acacia Symbionts in Senegal Reveal New Species of Mesorhizobium with a Putative Geographical Pattern. PLoS ONE, 2015, 10, e0117667.	2.5	21
7	The geographical patterns of symbiont diversity in the invasive legume <i><scp>M</scp>imosa pudica</i> can be explained by the competitiveness of its symbionts and by the host genotype. Environmental Microbiology, 2014, 16, 2099-2111.	3.8	55
8	Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Standards in Genomic Sciences, 2014, 9, 763-774.	1.5	71
9	Draft Genome Sequence of Rhizobium mesoamericanum STM3625, a Nitrogen-Fixing Symbiont of <i>Mimosa pudica</i> Isolated in French Guiana (South America). Genome Announcements, 2013, 1, .	0.8	6
10	Local and systemic N signaling are involved in <i>Medicago truncatula</i> preference for the most efficient <i>Sinorhizobium</i> symbiotic partners. New Phytologist, 2012, 195, 437-449.	7.3	68
11	Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiology Ecology, 2012, 79, 487-503.	2.7	121
12	Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium) Tj ETQq0 0 0 rgBT /Ove Ecology, 2012, 81, 618-635.	rlock 10 T 2.7	f 50 307 Td (72
13	Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Applied Microbiology and Biotechnology, 2008, 78, 1007-1016.	3.6	36
14	LAC3, a new low redox potential laccase from Trametes sp. strain C30 obtained as a recombinant protein in yeast. Enzyme and Microbial Technology, 2005, 36, 34-41.	3.2	63
15	Selenite and Tellurite Reduction by Shewanella oneidensis. Applied and Environmental Microbiology, 2005, 71, 5607-5609.	3.1	167
16	Ribosomal DNA sequence analysis shows that the basidiomycete C30 belongs to the genus Trametes. Research in Microbiology, 2003, 154, 25-28.	2.1	14
17	Characterization of a low redox potential laccase from the basidiomycete C30. FEBS Journal, 2002, 269, 6119-6125.	0.2	67
18	Enhancement of minor laccases production in the basidiomyceteMarasmius quercophilusC30. FEMS Microbiology Letters, 2001, 200, 25-30.	1.8	52

#	Article	IF	CITATIONS
19	Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus. Applied and Environmental Microbiology, 2000, 66, 925-929.	3.1	114
20	Structural Studies of the O-Specific Chains of Hafnia Alvei Strains 744, PCM 1194 and PCM 1210 Lipopolysaccharides. FEBS Journal, 1997, 245, 668-675.	0.2	10