Alexandra Hakala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorption and transformation of biocides fromÂhydraulic fracturing in the Marcellus Shale: a review. Environmental Chemistry Letters, 2022, 20, 773-795.	8.3	0
2	Experimental Investigation of Barium Sources and Fluid–Rock Interaction in Unconventional Marcellus Shale Wells Using Ba Isotopes. Energy & Fuels, 2022, 36, 4470-4478.	2.5	1
3	Determination of transition metal ions in fossil fuel associated wastewaters using chelation ion chromatography. Journal of Chromatography A, 2022, 1668, 462924.	1.8	4
4	Predicting the potential for mineral scale precipitation in unconventional reservoirs due to fluid-rock and fluid mixing geochemical reactions. Fuel, 2021, 284, 118883.	3.4	18
5	Geochemical controls on CO ₂ interactions with deep subsurface shales: implications for geologic carbon sequestration. Environmental Sciences: Processes and Impacts, 2021, 23, 1278-1300.	1.7	16
6	Characterizing mineralization on low carbon steel exposed to aerated and degassed synthetic hydraulic fracture fluids. Journal of Petroleum Science and Engineering, 2021, 202, 108514.	2.1	1
7	Influence of Flow Pathway Geometry on Barite Scale Deposition in Marcellus Shale during Hydraulic Fracturing. Energy & Fuels, 2021, 35, 11947-11957.	2.5	3
8	Understanding controls on the geochemistry of hydrocarbon produced waters from different basins across the US. Environmental Sciences: Processes and Impacts, 2021, 23, 28-47.	1.7	2
9	A New Modeling Framework for Multi-Scale Simulation of Hydraulic Fracturing and Production from Unconventional Reservoirs. Energies, 2021, 14, 641.	1.6	10
10	Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale. Frontiers in Earth Science, 2021, 9, .	0.8	10
11	Influence of Reactive Flow Conditions on Barite Scaling in Marcellus Shale during Stimulation and Shut-In Periods of Hydraulic Fracturing. Energy & Fuels, 2020, 34, 13625-13635.	2.5	22
12	Utilization of produced water baseline as a groundwater monitoring tool at a CO2-EOR site in the Permian Basin, Texas, USA. Applied Geochemistry, 2020, 121, 104688.	1.4	5
13	Investigation of Barite Scaling During Reaction between Pre-Treated Hydraulic Fracturing Fluid from the Field and Marcellus Shale. , 2020, , .		5
14	Barium Isotopes Track the Source of Dissolved Solids in Produced Water from the Unconventional Marcellus Shale Gas Play. Environmental Science & Technology, 2020, 54, 4275-4285.	4.6	17
15	Application of isotopic and geochemical signals in unconventional oil and gas reservoir produced waters toward characterizing in situ geochemical fluid-shale reactions. Science of the Total Environment, 2020, 714, 136867.	3.9	21
16	Geochemical solid characterization of drill cuttings, core and drilling mud from Marcellus Shale Energy development. Journal of Natural Gas Science and Engineering, 2019, 68, 102922.	2.1	23
17	Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian Basin. Chemical Geology, 2019, 509, 194-212.	1.4	26
18	Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale. Environmental Sciences: Processes and Impacts, 2019, 21, 845-855.	1.7	16

Alexandra Hakala

#	Article	IF	CITATIONS
19	<i>In situ</i> transformation of hydraulic fracturing surfactants from well injection to produced water. Environmental Sciences: Processes and Impacts, 2019, 21, 1777-1786.	1.7	16
20	Empirically assessing the potential release of rare earth elements from black shale under simulated hydraulic fracturing conditions. Journal of Natural Gas Science and Engineering, 2018, 50, 259-268.	2.1	4
21	Role of waterâ^'rock interaction in the geochemical evolution of Marcellus Shale produced waters. International Journal of Coal Geology, 2018, 191, 95-111.	1.9	53
22	Bench-Top Experiments Evaluating Simulated Hydraulic Fracturing Fluid Interactions with Marcellus Shale Core. , 2018, , .		3
23	Influence of colloids on metal concentrations and radiogenic strontium isotopes in groundwater and oil and gas-produced waters. Applied Geochemistry, 2018, 95, 85-96.	1.4	12
24	Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale. Applied Geochemistry, 2017, 76, 36-50.	1.4	94
25	Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid. Environmental Science & Technology, 2017, 51, 9391-9402.	4.6	116
26	Geochemical and lithium isotope tracking of dissolved solid sources in Permian Basin carbonate reservoir and overlying aquifer waters at an enhanced oil recovery site, northwest Texas, USA. Applied Geochemistry, 2017, 87, 122-135.	1.4	23
27	Role of Organic Acids in Controlling Mineral Scale Formation During Hydraulic Fracturing at the Marcellus Shale Energy and Environmental Laboratory (MSEEL) Site. , 2017, , .		4
28	Laboratory-Scale Studies on Chemical Reactions Between Fracturing Fluid and Shale Core From the Marcellus Shale Energy and Environmental Laboratory (MSEEL) Site. , 2017, , .		11
29	Management and dewatering of brines extracted from geologic carbon storage sites. International Journal of Greenhouse Gas Control, 2017, 63, 194-214.	2.3	22
30	Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: Role of post-depositional diagenesis of phosphorus phases. Chemical Geology, 2017, 466, 533-544.	1.4	38
31	Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Dissolution. Energy & amp; Fuels, 2016, 30, 4197-4208.	2.5	35
32	Reaction and diffusion at the reservoir/shale interface during CO2 storage: Impact of geochemical kinetics. Applied Geochemistry, 2015, 61, 119-131.	1.4	28
33	Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review. Environmental Sciences: Processes and Impacts, 2014, 16, 2080.	1.7	6
34	An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 2014, 126, 4-19.	1.9	113
35	High throughput method for Sr extraction from variable matrix waters and 87Sr/86Sr isotope analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2013, 28, 1338.	1.6	24
36	Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics. Applied Geochemistry, 2013, 30, 41-56.	1.4	72

Alexandra Hakala

#	ARTICLE	IF	CITATIONS
37	CO2 leakage impacts on shallow groundwater: Field-scale reactive-transport simulations informed by observations at a natural analog site. Applied Geochemistry, 2013, 30, 136-147.	1.4	60
38	Trace Metal Source Terms in Carbon Sequestration Environments. Environmental Science & Technology, 2013, 47, 322-329.	4.6	46
39	CO2–rock–brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A Chemical Geology, 2012, 291, 269-277.	1.4	166
40	Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico. International Journal of Greenhouse Gas Control, 2012, 10, 199-214.	2.3	69
41	H2S–CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration. International Journal of Greenhouse Gas Control, 2011, 5, 880-888.	2.3	74
42	U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 2011, 5, 952-965.	2.3	222
43	The challenge of predicting groundwater quality impacts in a CO2 leakage scenario: Results from field, laboratory, and modeling studies at a natural analog site in New Mexico, USA. Energy Procedia, 2011, 4, 3239-3245.	1.8	31
44	Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes. Fuel Processing Technology, 2011, 92, 1-12.	3.7	31
45	Assessment of the geochemical reactivity of Fe-DOM complexes in wetland sediment pore waters using a nitroaromatic probe compound. Geochimica Et Cosmochimica Acta, 2009, 73, 1382-1393.	1.6	29
46	Evaluating the triplet state photoreactivity of dissolved organic matter isolated by chromatography and ultrafiltration using an alkylphenol probe molecule. Limnology and Oceanography: Methods, 2009, 7, 391-398.	1.0	22
47	Influence of Dissolved Organic Matter and Fe(II) on the Abiotic Reduction of Pentachloronitrobenzene. Environmental Science & Technology, 2007, 41, 7337-7342.	4.6	52