Noel Michele Holbrook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772596/publications.pdf

Version: 2024-02-01

123 papers

14,796 citations

18436 62 h-index 118 g-index

144 all docs

144 docs citations

times ranked

144

10703 citing authors

#	Article	IF	CITATIONS
1	Plant carbohydrate storage: intra―and interâ€specific tradeâ€offs reveal a major life history trait. New Phytologist, 2022, 235, 2211-2222.	3.5	28
2	Sieve tube structural variation in <i>Austrobaileya scandens</i> and its significance for lianescence. Plant, Cell and Environment, 2022, 45, 2460-2475.	2.8	2
3	A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
4	A tale to astonish: Ant-Man at the plasmodesmal gates. Journal of Plant Physiology, 2021, 261, 153431.	1.6	0
5	Ecophysiological differentiation between life stages in filmy ferns (Hymenophyllaceae). Journal of Plant Research, 2021, 134, 971-988.	1.2	8
6	Raman spectroscopy reveals high phloem sugar content in leaves of canopy red oak trees. New Phytologist, 2021, 232, 418-424.	3.5	11
7	Changes in ploidy affect vascular allometry and hydraulic function in <i>Mangifera indica</i> trees. Plant Journal, 2021, 108, 541-554.	2.8	11
8	Idioblasts and peltate hairs as distribution networks for water absorbed by xerophilous leaves. Plant, Cell and Environment, 2021, 44, 1346-1360.	2.8	9
9	Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species. Plant, Cell and Environment, 2020, 43, 3048-3067.	2.8	23
10	Leaf Carbon Export and Nonstructural Carbohydrates in Relation to Diurnal Water Dynamics in Mature Oak Trees. Plant Physiology, 2020, 183, 1612-1621.	2.3	30
11	Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in <i>Quercus rubra </i> . American Journal of Botany, 2020, 107, 852-863.	0.8	17
12	Advanced vascular function discovered in a widespread moss. Nature Plants, 2020, 6, 273-279.	4.7	54
13	Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nature Food, 2020, 1, 127-133.	6.2	113
14	Visualizing Embolism Propagation in Gas-Injected Leaves. Plant Physiology, 2019, 180, 874-881.	2.3	11
15	Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. American Journal of Botany, 2019, 106, 244-259.	0.8	8
16	Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration. Tree Physiology, 2018, 38, 1041-1052.	1.4	24
17	Where does $M\tilde{A}^{1}_{4}$ nch flow begin? Sucrose transport in the pre-phloem path. Current Opinion in Plant Biology, 2018, 43, 101-107.	3.5	13
18	Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Science of the Total Environment, 2018, 633, 12-29.	3.9	28

#	Article	IF	Citations
19	Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple Hydraulic Trait. Trends in Plant Science, 2018, 23, 112-120.	4.3	243
20	Comparing optimal and empirical stomatal conductance models for application in Earth system models. Global Change Biology, 2018, 24, 5708-5723.	4.2	75
21	Editorial overview: Physiology and metabolism: Phloem: a supracellular highway for the transport of sugars, signals, and pathogens. Current Opinion in Plant Biology, 2018, 43, iii-vii.	3. 5	14
22	Impact of hemlock woolly adelgid (Adelges tsugae) infestation on xylem structure and function and leaf physiology in eastern hemlock (Tsuga canadensis). Functional Plant Biology, 2018, 45, 501.	1.1	9
23	Global Relationships between Cropland Intensification and Summer Temperature Extremes over the Last 50 Years. Journal of Climate, 2017, 30, 7505-7528.	1.2	43
24	Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective. Plant Physiology, 2017, 174, 1996-2007.	2.3	31
25	Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China. Tree Physiology, 2017, 37, 604-616.	1.4	27
26	Maintenance of carbohydrate transport in tall trees. Nature Plants, 2017, 3, 965-972.	4.7	59
27	Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems. Plant Physiology, 2017, 174, 764-775.	2.3	158
28	Testing the Mýnch hypothesis of long distance phloem transport in plants. ELife, 2016, 5, .	2.8	137
29	Reversible Leaf Xylem Collapse: A Potential "Circuit Breaker―against Cavitation Â. Plant Physiology, 2016, 172, 2261-2274.	2. 3	83
30	The tomato plastidic fructokinase <i>Sl<scp>FRK</scp>3</i> plays a role in xylem development. New Phytologist, 2016, 209, 1484-1495.	3 . 5	35
31	Cooling of US Midwest summer temperature extremes from cropland intensification. Nature Climate Change, 2016, 6, 317-322.	8.1	191
32	Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Scientific Data, 2015, 2, 150036.	2.4	66
33	Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141863.	1.2	26
34	The making of giant pumpkins: how selective breeding changed the phloem of <scp><i>C</i></scp> <i>ucurbita maxima</i> from source to sink. Plant, Cell and Environment, 2015, 38, 1543-1554.	2.8	29
35	Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels. Plant Physiology, 2015, 168, 1636-1647.	2.3	33
36	Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiology, 2015, 35, 354-365.	1.4	96

#	Article	IF	Citations
37	Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth. PLoS ONE, 2014, 9, e87888.	1.1	36
38	Seasonal dynamics in photosynthesis of woody plants at the northern limit of Asian tropics: potential role of fog in maintaining tropical rainforests and agriculture in Southwest China. Tree Physiology, 2014, 34, 1069-1078.	1.4	19
39	Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance. Plant Physiology, 2014, 165, 1557-1565.	2.3	39
40	The role of leaf hydraulic conductance dynamics on the timing of leaf senescence. Functional Plant Biology, 2014, 41, 37.	1.1	7
41	The stability of xylem water under tension: a long, slow spin proves illuminating. Plant, Cell and Environment, 2014, 37, 2652-2653.	2.8	9
42	Leaf hydraulics II: Vascularized tissues. Journal of Theoretical Biology, 2014, 340, 267-284.	0.8	10
43	Increasing CO2 threatens human nutrition. Nature, 2014, 510, 139-142.	13.7	1,024
44	Cavitation and Its Discontents: Opportunities for Resolving Current Controversies Â. Plant Physiology, 2014, 164, 1649-1660.	2.3	78
45	The Physicochemical Hydrodynamics of Vascular Plants. Annual Review of Fluid Mechanics, 2014, 46, 615-642.	10.8	160
46	Leaf hydraulics I: Scaling transport properties from single cells to tissues. Journal of Theoretical Biology, 2014, 340, 251-266.	0.8	17
47	The Competition between Liquid and Vapor Transport in Transpiring Leaves Â. Plant Physiology, 2014, 164, 1741-1758.	2.3	108
48	Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment, 2013, 36, 1938-1949.	2.8	333
49	Phloem Transport Velocity Varies over Time and among Vascular Bundles during Early Cucumber Seedling Development. Plant Physiology, 2013, 163, 1409-1418.	2.3	50
50	Polyploidy enhances the occupation of heterogeneous environments through hydraulic related tradeâ€offs in <i>Atriplex canescens</i> (Chenopodiaceae). New Phytologist, 2013, 197, 970-978.	3.5	141
51	Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Journal of Experimental Botany, 2013, 64, 2321-2332.	2.4	98
52	Optimal concentration for sugar transport in plants. Journal of the Royal Society Interface, 2013, 10, 20130055.	1.5	63
53	Modeling the Hydrodynamics of Phloem Sieve Plates. Frontiers in Plant Science, 2012, 3, 151.	1.7	80
54	Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 2012, 3, 685-694.	2.2	110

#	Article	IF	Citations
55	Hydraulic conductivity of red oak (<i>Quercus rubra</i> L.) leaf tissue does not respond to light. Plant, Cell and Environment, 2011, 34, 565-579.	2.8	31
56	Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant, Cell and Environment, 2011, 34, 690-703.	2.8	129
57	Optimality of the Mýnch mechanism for translocation of sugars in plants. Journal of the Royal Society Interface, 2011, 8, 1155-1165.	1.5	76
58	Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy. Ecology, 2011, 92, 2117-2130.	1.5	53
59	Phenology, Lignotubers, and Water Relations of <i>Cochlospermum vitifolium</i> , a Pioneer Tropical Dry Forest Tree in Costa Rica. Biotropica, 2010, 42, 104-111.	0.8	20
60	Hydraulic properties of fern sporophytes: Consequences for ecological and evolutionary diversification. American Journal of Botany, 2010, 97, 2007-2019.	0.8	68
61	Confronting Maxwell's demon: biophysics of xylem embolism repair. Trends in Plant Science, 2009, 14, 530-534.	4.3	282
62	Tensioning the helix: a mechanism for force generation in twining plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2643-2650.	1.2	41
63	Linking xylem diameter variations with sap flow measurements. Plant and Soil, 2008, 305, 77-90.	1.8	56
64	Leaf age and the timing of leaf abscission in two tropical dry forest trees. Trees - Structure and Function, 2008, 22, 393-401.	0.9	10
65	Modeling fluid flow in <i>Medullosa</i> , an anatomically unusual Carboniferous seed plant. Paleobiology, 2008, 34, 472-493.	1.3	50
66	Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest trees. Functional Ecology, 2007, 21, 705-712.	1.7	28
67	The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 2007, 173, 576-583.	3.5	208
68	Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 2007, 175, 686-698.	3.5	184
69	LEAF HYDRAULICS. Annual Review of Plant Biology, 2006, 57, 361-381.	8.6	813
70	Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytologist, 2006, 169, 549-559.	3.5	120
71	Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves. Plant, Cell and Environment, 2006, 29, 803-809.	2.8	53
72	Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits?. Plant, Cell and Environment, 2006, 29, 1021-1032.	2.8	73

#	Article	lF	CITATIONS
7 3	Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia?. Plant, Cell and Environment, 2005, 28, 192-201.	2.8	62
74	The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell and Environment, 2005, 28, 1082-1089.	2.8	126
75	Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist, 2005, 165, 839-846.	3.5	327
76	Leaf physiology does not predict leaf habit; examples from tropical dry forest. Trees - Structure and Function, 2005, 19, 290-295.	0.9	46
77	Water Stress Deforms Tracheids Peripheral to the Leaf Vein of a Tropical Conifer. Plant Physiology, 2005, 137, 1139-1146.	2.3	157
78	The importance of frictional interactions in maintaining the stability of the twining habit. American Journal of Botany, 2005, 92, 1820-1826.	0.8	29
79	Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak. Plant Physiology, 2004, 134, 1824-1833.	2.3	176
80	A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. Tree Physiology, 2004, 24, 911-917.	1.4	118
81	Scaling phloem transport: information transmission. Plant, Cell and Environment, 2004, 27, 509-519.	2.8	80
82	Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant, Cell and Environment, 2004, 27, 820-827.	2.8	179
83	Water relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell and Environment, 2004, 27, 971-979.	2.8	112
84	Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist, 2004, 162, 663-670.	3.5	206
85	Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant, Cell and Environment, 2004, 27, 357-365.	2.8	108
86	The †hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment, 2003, 26, 1343-1356.	2.8	627
87	Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell and Environment, 2003, 26, 443-450.	2.8	358
88	Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysaccharides. Plant, Cell and Environment, 2003, 26, 623-630.	2.8	62
89	Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant, Cell and Environment, 2003, 26, 1561-1577.	2.8	122
90	Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytologist, 2003, 158, 295-303.	3.5	115

#	Article	lF	Citations
91	Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecological Research, 2003, 18, 677-694.	0.7	197
92	Vulnerability of Xylem Vessels to Cavitation in Sugar Maple. Scaling from Individual Vessels to Whole Branches. Plant Physiology, 2003, 131, 1775-1780.	2.3	79
93	Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 2003, 132, 2166-2173.	2.3	570
94	The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. Journal of Experimental Botany, 2002, 53, 2177-2184.	2.4	237
95	The Dynamics of "Dead Wood": Maintenance of Water Transport Through Plant Stems. Integrative and Comparative Biology, 2002, 42, 492-496.	0.9	24
96	Understanding the Hydraulics of Porous Pipes: Tradeoffs Between Water Uptake and Root Length Utilization. Journal of Plant Growth Regulation, 2002, 21, 315-323.	2.8	93
97	Hydraulic architecture of leaf venation in Laurus nobilis L Plant, Cell and Environment, 2002, 25, 1445-1450.	2.8	114
98	Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-14.	2.4	165
99	Hydrogel Control of Xylem Hydraulic Resistance in Plants. Science, 2001, 291, 1059-1062.	6.0	485
100	Hydraulic properties of individual xylem vessels of Fraxinus americana. Journal of Experimental Botany, 2001, 52, 257-264.	2.4	2
101	Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential and dynamics of embolism formation and repair. Oecologia, 2001, 126, 182-192.	0.9	109
102	Temporal and spatial patterns of twining force and lignification in stems of Ipomoea purpurea. Planta, 2001, 213, 192-198.	1.6	24
103	Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell and Environment, 2001, 24, 1243-1256.	2.8	134
104	In Vivo Observation of Cavitation and Embolism Repair Using Magnetic Resonance Imaging. Plant Physiology, 2001, 126, 27-31.	2.3	252
105	Why Leaves Turn Red in Autumn. The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood. Plant Physiology, 2001, 127, 566-574.	2.3	498
106	Xylem sap flow and stem hydraulics of the vesselless angiospermDrimys granadensis(Winteraceae) in a Costa Rican elfin forest. Plant, Cell and Environment, 2000, 23, 1067-1077.	2.8	54
107	Bordered Pit Structure and Vessel Wall Surface Properties. Implications for Embolism Repair. Plant Physiology, 2000, 123, 1015-1020.	2.3	121
108	Embolism Repair and Xylem Tension: Do We Need a Miracle?1. Plant Physiology, 1999, 120, 7-10.	2.3	304

#	Article	IF	CITATIONS
109	Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell and Environment, 1998, 21, 397-406.	2.8	446
110	Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer) Tj ETQq0 C	0 0 rgBT /0 2.8	Overlock 10 Ti
111	Physiology of Tropical Vines and Hemiepiphytes: Plants that Climb Up and Plants that Climb Down., 1996,, 363-394.		55
112	Water relations of epiphytic and terrestrially-rooted strangler figs in a Venezuelan palm savanna. Oecologia, 1996, 106, 424-431.	0.9	47
113	From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant, Cell and Environment, 1996, 19, 631-642.	2.8	91
114	Stem Water Storage. , 1995, , 151-174.		113
115	Comparative Phenology of Epiphytic and Tree-Phase Strangler Figs in a Venezuelan Palm Savanna. Biotropica, 1995, 27, 183.	0.8	37
116	Biomechanical studies of vines. , 1992, , 73-98.		56
117	Water balance in the arborescent palm, Sabal palmetto. I. Stem structure, tissue water release properties and leaf epidermal conductance. Plant, Cell and Environment, 1992, 15, 393-399.	2.8	45
118	Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant, Cell and Environment, 1992, 15, 401-409.	2.8	95
119	STRANGLER FIG ROOTING HABITS AND NUTRIENT RELATIONS IN THE LLANOS OF VENEZUELA. American Journal of Botany, 1989, 76, 781-788.	0.8	70
120	INFLUENCE OF NEIGHBORS ON TREE FORM: EFFECTS OF LATERAL SHADE AND PREVENTION OF SWAY ON THE ALLOMETRY OF LIQUIDAMBAR STYRACIFLUA (SWEET GUM). American Journal of Botany, 1989, 76, 1740-1749.	0.8	130
121	INFLUENCE OF NEIGHBORS ON TREE FORM: EFFECTS OF LATERAL SHADE AND PREVENTION OF SWAY ON THE ALLOMETRY OF LIQUIDAMBAR STYRACIFLUA (SWEET GUM). , 1989, 76, 1740.		77
122	Spring Filling of Xylem Vessels in Wild Grapevine. Plant Physiology, 1987, 83, 414-417.	2.3	294
123	Phosotynthesis in hemiepiphytic species of Clusia and Ficus. Oecologia, 1987, 74, 339-346.	0.9	60