Richard Stephan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New concepts of instantaneous active and reactive powers in electrical systems with generic loads. IEEE Transactions on Power Delivery, 1993, 8, 697-703.	4.3	284
2	An efficient controller for an adjustable speed induction motor drive. IEEE Transactions on Industrial Electronics, 1994, 41, 533-539.	7.9	156
3	A Full Scale Superconducting Magnetic Levitation (MagLev) Vehicle Operational Line. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	141
4	MagLev-Cobra Operational Tests. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	75
5	Tests on a Superconductor Linear Magnetic Bearing of a Full-Scale MagLev Vehicle. IEEE Transactions on Applied Superconductivity, 2011, 21, 1464-1468.	1.7	68
6	Vector control methods for induction machines: an overview. IEEE Transactions on Education, 2001, 44, 170-175.	2.4	66
7	Superconducting Light Rail Vehicle: A Transportation Solution for Highly Populated Cities. IEEE Vehicular Technology Magazine, 2012, 7, 122-127.	3.4	57
8	Tests With One Module of the Brazilian Maglev-Cobra Vehicle. IEEE Transactions on Applied Superconductivity, 2013, 23, 3601204-3601204.	1.7	50
9	A superconducting levitation vehicle prototype. Physica C: Superconductivity and Its Applications, 2004, 408-410, 932-934.	1.2	49
10	A bearingless method for induction machines. IEEE Transactions on Magnetics, 1993, 29, 2965-2967.	2.1	46
11	Optimization of a Linear Superconducting Levitation System. IEEE Transactions on Applied Superconductivity, 2011, 21, 3548-3554.	1.7	45
12	Experimental and Theoretical Levitation Forces in a Superconducting Bearing for a Real-Scale Maglev System. IEEE Transactions on Applied Superconductivity, 2011, 21, 3532-3540.	1.7	44
13	Flywheel Energy Storage System Description and Tests. IEEE Transactions on Applied Superconductivity, 2007, 17, 2154-2157.	1.7	43
14	MagLev Cobra: Test Facilities and Operational Experiments. Journal of Physics: Conference Series, 2014, 507, 032017.	0.4	36
15	Levitation force and stability of superconducting linear bearings using NdFeB and ferrite magnets. Physica C: Superconductivity and Its Applications, 2003, 386, 490-494.	1.2	34
16	Experiments in a real scale maglev vehicle prototype. Journal of Physics: Conference Series, 2010, 234, 032054.	0.4	33
17	Colonoscopic impaction in left colon strictures resulting in right colon pneumatic perforation. Surgical Endoscopy and Other Interventional Techniques, 1992, 6, 273-276.	2.4	30
18	A magnetic bearing system using capacitive sensors for position measurement. IEEE Transactions on Magnetics, 1990, 26, 2541-2543.	2.1	29

RICHARD STEPHAN

#	Article	IF	CITATIONS
19	Modeling adjustable-speed drives with long feeders. IEEE Transactions on Industrial Electronics, 2000, 47, 549-556.	7.9	29
20	Simulations and Tests of Superconducting Linear Bearings for a MAGLEV Prototype. IEEE Transactions on Applied Superconductivity, 2009, 19, 2120-2123.	1.7	28
21	Voltage Sags Compensation Using a Superconducting Flywheel Energy Storage System. IEEE Transactions on Applied Superconductivity, 2005, 15, 2265-2268.	1.7	27
22	Dynamical Tests in a Linear Superconducting Magnetic Bearing. Physics Procedia, 2012, 36, 1049-1054.	1.2	26
23	Emulation of a Full Scale MagLev Vehicle Behavior Under Operational Conditions. IEEE Transactions on Applied Superconductivity, 2013, 23, 3601105-3601105.	1.7	24
24	Performance of Nd-Fe-B and ferrite magnets in superconducting linear bearings with bulk YBCO. IEEE Transactions on Applied Superconductivity, 2003, 13, 2271-2274.	1.7	23
25	Dynamic Tests of an Optimized Linear Superconducting Levitation System. IEEE Transactions on Applied Superconductivity, 2013, 23, 3600504-3600504.	1.7	21
26	A superconducting high-speed flywheel energy storage system. Physica C: Superconductivity and Its Applications, 2004, 408-410, 930-931.	1.2	20
27	Comparing the indirect field-oriented control with a scalar method. IEEE Transactions on Industrial Electronics, 1994, 41, 201-207.	7.9	18
28	Adaptive and robust cascade schemes for thyristor driven DC-motor speed control. Automatica, 1991, 27, 449-461.	5.0	15
29	Operational Tests of a Full Scale Superconducting MagLevehicle Unit. Physics Procedia, 2012, 36, 943-947.	1.2	14
30	Superconducting axial bearing for induction machines with active radial magnetic bearings. IEEE Transactions on Applied Superconductivity, 1999, 9, 964-967.	1.7	13
31	Tests with a hybrid bearing for a flywheel energy storage system. Superconductor Science and Technology, 2016, 29, 095016.	3.5	13
32	The Vital Contribution of MagLev Vehicles for the Mobility in Smart Cities. Electronics (Switzerland), 2020, 9, 978.	3.1	13
33	Design and Innovative Test of a Linear Induction Motor for Urban MagLev Vehicles. IEEE Transactions on Industry Applications, 2020, 56, 6949-6956.	4.9	12
34	Analysis and control of a loaded bearingless machine. IEEE Transactions on Magnetics, 1999, 35, 3998-4000.	2.1	11
35	Cascade adaptive speed control off a thyristor-driven DC motor. IEE Proceedings D: Control Theory and Applications, 1988, 135, 49.	0.4	10
36	Optimized Linear Motor for Urban Superconducting Magnetic Levitation Vehicles. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-8.	1.7	9

RICHARD STEPHAN

#	Article	IF	CITATIONS
37	Designing, simulations and experiments of a passive permanent magnet bearing. International Journal of Applied Electromagnetics and Mechanics, 2016, 51, 131-149.	0.6	8
38	Electromagnetic Levitation of a Disc. IEEE Transactions on Education, 2012, 55, 248-254.	2.4	7
39	Finite element analysis of the forces developed on linear induction motors. , 2015, , .		7
40	Overview of Electrodynamic Levitation Technique Applied to Maglev Vehicles. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	7
41	A simple model for a thyristor-driven DC motor considering continuous and discontinuous current modes. IEEE Transactions on Education, 1991, 34, 330-335.	2.4	6
42	Operating points of a doubly fed cascaded induction machine. , 2009, , .		6
43	Stator flux orientation control of the cascaded Doubly Fed Induction machine. , 2015, , .		5
44	Retrospective and perspectives of the superconducting magnetic levitation (sml) technology applied to urban transportation. Transportation Systems and Technology, 2018, 4, 195-202.	0.4	5
45	Maglev-cobra: an urban transportation system For highly populated cityes. Transportation Systems and Technology, 2015, 1, 16-25.	0.4	5
46	Preliminary Design of a Mid-Range Superconducting Wireless Power Transfer System for Magnetic Levitation Vehicles: Application to the MagLev-Cobra. , 2021, , .		5
47	Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2509-2512.	1.2	4
48	Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation. Superconductor Science and Technology, 2000, 13, 870-874.	3.5	4
49	Compensating characteristics of a brushless doubly-fed machine. , 0, , .		4
50	Hardware-in-the-loop development of a heaving point absorber wave energy converter using inertia emulation. Electrical Engineering, 2021, 103, 2675-2684.	2.0	4
51	Comparison of overvoltage mitigation methods in industrial drives with long cables. , 0, , .		3
52	A superconducting levitated small scale vehicle with linear synchronous motor. , 0, , .		3
53	Characterization of levitation force for a superconducting magnetic levitation vehicle. Transportation Systems and Technology, 2018, 4, 124-133.	0.4	3
54	Establishing Photovoltaic (PV) Education in RIO DE JANEIRO. International Journal of Electrical Engineering and Education, 1998, 35, 139-146.	0.8	2

#	Article	IF	CITATIONS
55	Hybrid bearing for induction machine with controlled electromagnetic positioning and superconducting levitation. IEEE Transactions on Magnetics, 2000, 36, 3693-3695.	2.1	2
56	UFRJ power electronics teaching lab: ten years. , 0, , .		2
57	A Didactic Comparison of Magnetic Forces. International Journal of Electrical Engineering and Education, 2011, 48, 117-129.	0.8	2
58	Regenerative braking of a linear induction motor used for the traction of a MagLev vehicle. , 2013, , .		2
59	Brushless cascaded doubly-fed induction machine: Modeling and simulation. , 2017, , .		2
60	Cascade Control vs Full-State Feedback. , 2019, , .		2
61	Force and current characteristics of a linear induction motor used for the traction of a MagLev vehicle. , 2013, , .		1
62	Projeto MagLev Cobra - Levitação Supercondutora para Transporte Urbano. Revista Brasileira De Ensino De Fisica, 2016, 38, .	0.2	1
63	Position and current controller design for an electromagnetic levitation platform. , 2017, , .		1
64	Development of a Linear Motor for Urban Magnetically Levitated Vehicles Using an Innovative Workbench Topology. , 2019, , .		1
65	Didactic System for Control of Electrical Machines in Education and Research Laboratories. , 2019, , .		1
66	UFRJ Campus: A City of Innovative Mobility. World Sustainability Series, 2018, , 371-384.	0.4	1
67	Modelo para gestão ambiental de sistemas de transporte urbano por levitação magnética com aplicação da teoria fuzzy. Journal of Transport Literature, 2012, 6, 152-179.	0.3	1
68	Air Cushion Vehicle (ACV): History Development and Maglev Comparison. Transportation Systems and Technology, 2019, 5, 5-25.	0.4	1
69	Study of a Null-Flux Suspension System Using Permanent Magnet Halbach Arrays. , 2020, , .		1
70	Hybrid bearing for induction machine with controlled electromagnetic positioning and superconducting levitation. , 0, , .		0
71	Steady state analysis of the Doubly Fed Cascaded Induction Machine. , 2010, , .		0

72 Synchronized operation of a Magnetically Levitated vehicle. , 2011, , .

RICHARD STEPHAN

#	Article	IF	CITATIONS
73	Wind turbine generator system based on Cascaded Doubly Fed Induction Generator. , 2015, , .		0
74	Operation Boundaries of a Single Phase Thyristor Driven DC-Motor. , 2019, , .		0
75	Vibration analysis of a superconducting magnetic bearing under different temperatures. International Journal of Applied Electromagnetics and Mechanics, 2020, 63, 119-131.	0.6	0
76	Maglev-Cobra: da Universidade para a Sociedade. , 2021, 1, .		0