
Matthew Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The blood–retina barrier in health and disease. FEBS Journal, 2023, 290, 878-891.	4.7	58
2	Permeability of the Blood–Brain Barrier after Traumatic Brain Injury: Radiological Considerations. Journal of Neurotrauma, 2022, 39, 20-34.	3.4	16
3	S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurgical Review, 2022, 45, 1171-1193.	2.4	28
4	Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nature Communications, 2022, 13, 164.	12.8	75
5	Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Reports Medicine, 2022, 3, 100497.	6.5	4
6	Minocycline suppresses disease-associated microglia (DAM) in a model of photoreceptor cell degeneration. Experimental Eye Research, 2022, 217, 108953.	2.6	15
7	SARM1 Promotes Photoreceptor Degeneration in an Oxidative Stress Model of Retinal Degeneration. Frontiers in Neuroscience, 2022, 16, 852114.	2.8	2
8	Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain, 2022, 145, 2049-2063.	7.6	8
9	Microvascular stabilization via blood-brainÂbarrier regulation prevents seizure activity. Nature Communications, 2022, 13, 2003.	12.8	47
10	Recurrent <i>de novo</i> mutations in <i>CLDN5</i> induce an anion-selective blood–brain barrier and alternating hemiplegia. Brain, 2022, 145, 3374-3382.	7.6	13
11	siRNA targeting Schlemm's canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Molecular Therapy - Methods and Clinical Development, 2021, 20, 86-94.	4.1	10
12	Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochirurgica, 2021, 163, 1457-1467.	1.7	3
13	Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight, 2021, 6, .	5.0	6
14	Vascular Expression of Permeability-Resistant Occludin Mutant Preserves Visual Function in Diabetes. Diabetes, 2021, 70, 1549-1560.	0.6	13
15	Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Molecular Therapy, 2021, 29, 2041-2052.	8.2	20
16	Fibrotic Changes to Schlemm's Canal Endothelial Cells in Glaucoma. International Journal of Molecular Sciences, 2021, 22, 9446.	4.1	13
17	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815.	9.1	49
18	Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood–Brain Barrier. Biological and Pharmaceutical Bulletin, 2021, 44, 1380-1390.	1.4	20

#	Article	IF	CITATIONS
19	Attenuated CSFâ€1R signalling drives cerebrovascular pathology. EMBO Molecular Medicine, 2021, 13, e12889.	6.9	32
20	Tight Junctions of the Neurovascular Unit. Frontiers in Molecular Neuroscience, 2021, 14, 752781.	2.9	14
21	Decreased CSF1R Signaling and the Accumulation of Reticular Pseudo-Drusen?. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, 666-671.	0.7	Ο
22	Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 2020, 726, 133664.	2.1	178
23	Dynamic Blood–Brain Barrier Regulation in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 347-356.	3.4	97
24	Tight Junctions of the Outer Blood Retina Barrier. International Journal of Molecular Sciences, 2020, 21, 211.	4.1	104
25	Multi-Directional Dynamic Model for Traumatic Brain Injury Detection. Journal of Neurotrauma, 2020, 37, 982-993.	3.4	27
26	Properties and Therapeutic Implications of an Enigmatic D477G RPE65 Variant Associated with Autosomal Dominant Retinitis Pigmentosa. Genes, 2020, 11, 1420.	2.4	8
27	Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Translational Psychiatry, 2020, 10, 373.	4.8	95
28	Advanced late-onset retinitis pigmentosa with dominant-acting D477G RPE65 mutation is responsive to oral synthetic retinoid therapy. BMJ Open Ophthalmology, 2020, 5, e000462.	1.6	11
29	Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain, 2020, 143, 1826-1842.	7.6	42
30	Toll-like Receptor 2 Facilitates Oxidative Damage-Induced Retinal Degeneration. Cell Reports, 2020, 30, 2209-2224.e5.	6.4	36
31	Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183298.	2.6	51
32	SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Life Science Alliance, 2020, 3, e201900618.	2.8	42
33	Inner blood-retina barrier involvement in dry age-related macular degeneration (AMD) pathology. Neural Regeneration Research, 2020, 15, 1656.	3.0	7
34	Fundamentals of Brain–Barrier Anatomy and Global Functions. , 2019, , 3-20.		2
35	Pharmacokinetics of Systemic Drug Delivery. , 2019, , 39-56.		0
36	Age-related changes in eye morphology and aqueous humor dynamics in DBA/2J mice using contrast-enhanced ocular MRI. Magnetic Resonance Imaging, 2019, 59, 10-16.	1.8	10

#	Article	IF	CITATIONS
37	Claudin-5: gatekeeper of neurological function. Fluids and Barriers of the CNS, 2019, 16, 3.	5.0	304
38	Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochemical Pharmacology, 2019, 164, 321-325.	4.4	22
39	Intracameral Delivery of AAV to Corneal Endothelium for Expression of Secretory Proteins. Methods in Molecular Biology, 2019, 1950, 263-270.	0.9	2
40	IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. Journal of Neuroinflammation, 2019, 16, 251.	7.2	34
41	Inner Blood-Retinal Barrier Regulation in Retinopathies. Advances in Experimental Medicine and Biology, 2019, 1185, 329-333.	1.6	11
42	Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight, 2019, 4, .	5.0	33
43	Blood-brain barrier dysfunction in a boxer with chronic traumatic encephalopathy and schizophrenia. , 2019, 38, 51-58.		28
44	Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Progress in Retinal and Eye Research, 2018, 62, 120-133.	15.5	16
45	Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Molecular Psychiatry, 2018, 23, 2156-2166.	7.9	148
46	Enhancement of Outflow Facility in the Murine Eye by Targeting Selected Tight-Junctions of Schlemm's Canal Endothelia. Scientific Reports, 2017, 7, 40717.	3.3	25
47	The blood brain barrier: Insights from development and ageing. Tissue Barriers, 2017, 5, e1373897.	3.2	23
48	Social stress induces neurovascular pathology promoting depression. Nature Neuroscience, 2017, 20, 1752-1760.	14.8	617
49	Interleukinâ€ 3 3 regulates tissue remodelling and inhibits angiogenesis in the eye. Journal of Pathology, 2017, 241, 45-56.	4.5	47
50	Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Human Molecular Genetics, 2017, 26, 1230-1246.	2.9	60
51	Modulating the paracellular pathway at the blood–brain barrier: current and future approaches for drug delivery to the CNS. Drug Discovery Today: Technologies, 2016, 20, 35-39.	4.0	28
52	Blood–Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2016, 75, 656-662.	1.7	98
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
54	Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers, 2016, 4, e1138017.	3.2	183

#	Article	IF	CITATIONS
55	<scp>IL</scp> â€lα and inflammasomeâ€independent <scp>IL</scp> â€lβ promote neutrophil infiltration following alum vaccination. FEBS Journal, 2016, 283, 9-24.	4.7	60
56	The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 69-87.	0.1	2
57	The dynamic blood–brain barrier. FEBS Journal, 2015, 282, 4067-4079.	4.7	433
58	NLRP3 Inflammasome and Pathobiology in AMD. Journal of Clinical Medicine, 2015, 4, 172-192.	2.4	74
59	Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. Journal of Inflammation Research, 2015, 8, 15.	3.5	263
60	IL-18 Immunotherapy for Neovascular AMD: Tolerability and Efficacy in Nonhuman Primates. , 2015, 56, 5424.		31
61	Author Response: The Role of IL-18 in the Treatment of AMD. , 2015, 56, 8237.		1
62	Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Science Advances, 2015, 1, e1500472.	10.3	113
63	First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology, 2015, 89, 193-203.	4.1	18
64	Interleukin-18 Bioactivity and Dose: Data Interpretation at a Crossroads. Investigative Ophthalmology and Visual Science, 2014, 55, 8349-8350.	3.3	2
65	Differential Apicobasal VEGF Signaling at Vascular Blood-Neural Barriers. Developmental Cell, 2014, 30, 541-552.	7.0	79
66	IL-18 Attenuates Experimental Choroidal Neovascularization as a Potential Therapy for Wet Age-Related Macular Degeneration. Science Translational Medicine, 2014, 6, 230ra44.	12.4	87
67	IL-18: a new player in immunotherapy for age-related macular degeneration?. Expert Review of Clinical Immunology, 2014, 10, 1273-1275.	3.0	12
68	Reply to IL-18 is not therapeutic for neovascular age-related macular degeneration. Nature Medicine, 2014, 20, 1376-1377.	30.7	8
69	Endogenous Oils Derived From Human Adipocytes Are Potent Adjuvants That Promote IL-1α–Dependent Inflammation. Diabetes, 2014, 63, 2037-2050.	0.6	38
70	An Overview of the Involvement of Interleukin-18 in Degenerative Retinopathies. Advances in Experimental Medicine and Biology, 2014, 801, 409-415.	1.6	7
71	Antioxidant Therapy for Retinal Disease. Advances in Experimental Medicine and Biology, 2014, 801, 783-789.	1.6	14
72	An eye on the future of inflammasomes and drug development in AMD. Journal of Molecular Medicine, 2013, 91, 1059-1070.	3.9	21

#	Article	IF	CITATIONS
73	The Blood-Retina Barrier. Advances in Experimental Medicine and Biology, 2013, , 70-84.	1.6	182
74	NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nature Medicine, 2012, 18, 791-798.	30.7	365
75	Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nature Communications, 2012, 3, 849.	12.8	102
76	On Further Development of Barrier Modulation as a Technique for Systemic Ocular Drug Delivery. Advances in Experimental Medicine and Biology, 2012, 723, 155-159.	1.6	5
77	Calpain and Photoreceptor Apoptosis. Advances in Experimental Medicine and Biology, 2012, 723, 547-552.	1.6	8
78	Barrier Modulation in Drug Delivery to the Retina. Methods in Molecular Biology, 2012, 935, 371-380.	0.9	7
79	Molecular Medicines. SpringerBriefs in Genetics, 2012, , 31-46.	0.1	0
80	The blood-retina barrier: tight junctions and barrier modulation. Advances in Experimental Medicine and Biology, 2012, 763, 70-84.	1.6	85
81	From RNA interference technology to effective therapy: how far have we come and how far to go?. Therapeutic Delivery, 2011, 2, 1395-1406.	2.2	6
82	Systemic lowâ€molecular weight drug delivery to preâ€selected neuronal regions. EMBO Molecular Medicine, 2011, 3, 235-245.	6.9	42
83	Wnt Signaling Mediates Pathological Vascular Growth in Proliferative Retinopathy. Circulation, 2011, 124, 1871-1881.	1.6	108
84	RNAi-mediated barrier modulation: synergies of the brain and eye. Therapeutic Delivery, 2010, 1, 587-594.	2.2	7
85	Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opinion on Drug Delivery, 2010, 7, 859-869.	5.0	16
86	Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Human Molecular Genetics, 2010, 19, 4421-4436.	2.9	44
87	Reversible and Size-Selective Opening of the Inner Blood-Retina Barrier: A Novel Therapeutic Strategy. Advances in Experimental Medicine and Biology, 2010, 664, 301-308.	1.6	8
88	An experimental platform for systemic drug delivery to the retina. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17817-17822.	7.1	71
89	RNAiâ€mediated reversible opening of the bloodâ€brain barrier. Journal of Gene Medicine, 2008, 10, 930-947.	2.8	102
90	Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Human Molecular Genetics, 2008, 17, 2084-2100.	2.9	58

#	Article	IF	CITATIONS
91	Altered expression and interaction of adherens junction proteins in the developing OLM of the Rho(â^'/â^') mouse. Experimental Eye Research, 2007, 85, 714-720.	2.6	13
92	Involvement of MAPKs in Endostatin-Mediated Regulation of Blood-Retinal Barrier Function. Current Eye Research, 2006, 31, 1033-1045.	1.5	29