Matthew Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772445/publications.pdf

Version: 2024-02-01

92 papers

10,071 citations

35 h-index 87 g-index

99 all docs 99 docs citations 99 times ranked 20320 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Social stress induces neurovascular pathology promoting depression. Nature Neuroscience, 2017, 20, 1752-1760.	14.8	617
3	The dynamic blood–brain barrier. FEBS Journal, 2015, 282, 4067-4079.	4.7	433
4	NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nature Medicine, 2012, 18, 791-798.	30.7	365
5	Claudin-5: gatekeeper of neurological function. Fluids and Barriers of the CNS, 2019, 16, 3.	5.0	304
6	Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. Journal of Inflammation Research, 2015, 8, 15.	3.5	263
7	Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers, 2016, 4, e1138017.	3.2	183
8	The Blood-Retina Barrier. Advances in Experimental Medicine and Biology, 2013, , 70-84.	1.6	182
9	Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 2020, 726, 133664.	2.1	178
10	Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Molecular Psychiatry, 2018, 23, 2156-2166.	7.9	148
11	Autoregulated paracellular clearance of amyloid- \hat{l}^2 across the blood-brain barrier. Science Advances, 2015, 1 , e1500472.	10.3	113
12	Wnt Signaling Mediates Pathological Vascular Growth in Proliferative Retinopathy. Circulation, 2011, 124, 1871-1881.	1.6	108
13	Tight Junctions of the Outer Blood Retina Barrier. International Journal of Molecular Sciences, 2020, 21, 211.	4.1	104
14	RNAiâ€mediated reversible opening of the bloodâ€brain barrier. Journal of Gene Medicine, 2008, 10, 930-947.	2.8	102
15	Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nature Communications, 2012, 3, 849.	12.8	102
16	Blood–Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2016, 75, 656-662.	1.7	98
17	Dynamic Blood–Brain Barrier Regulation in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 347-356.	3.4	97
18	Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Translational Psychiatry, 2020, 10, 373.	4.8	95

#	Article	IF	CITATIONS
19	IL-18 Attenuates Experimental Choroidal Neovascularization as a Potential Therapy for Wet Age-Related Macular Degeneration. Science Translational Medicine, 2014, 6, 230ra44.	12.4	87
20	The blood-retina barrier: tight junctions and barrier modulation. Advances in Experimental Medicine and Biology, 2012, 763, 70-84.	1.6	85
21	Differential Apicobasal VEGF Signaling at Vascular Blood-Neural Barriers. Developmental Cell, 2014, 30, 541-552.	7.0	79
22	Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nature Communications, 2022, 13, 164.	12.8	75
23	NLRP3 Inflammasome and Pathobiology in AMD. Journal of Clinical Medicine, 2015, 4, 172-192.	2.4	74
24	An experimental platform for systemic drug delivery to the retina. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17817-17822.	7.1	71
25	<scp>IL</scp> â€1α and inflammasomeâ€independent <scp>lL</scp> â€1β promote neutrophil infiltration following alum vaccination. FEBS Journal, 2016, 283, 9-24.	4.7	60
26	Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Human Molecular Genetics, 2017, 26, 1230-1246.	2.9	60
27	Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Human Molecular Genetics, 2008, 17, 2084-2100.	2.9	58
28	The blood–retina barrier in health and disease. FEBS Journal, 2023, 290, 878-891.	4.7	58
29	Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183298.	2.6	51
30	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815.	9.1	49
31	Interleukinâ€33 regulates tissue remodelling and inhibits angiogenesis in the eye. Journal of Pathology, 2017, 241, 45-56.	4.5	47
32	Microvascular stabilization via blood-brainÂbarrier regulation prevents seizure activity. Nature Communications, 2022, 13, 2003.	12.8	47
33	Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Human Molecular Genetics, 2010, 19, 4421-4436.	2.9	44
34	Systemic lowâ€molecular weight drug delivery to preâ€selected neuronal regions. EMBO Molecular Medicine, 2011, 3, 235-245.	6.9	42
35	Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain, 2020, 143, 1826-1842.	7.6	42
36	SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Life Science Alliance, 2020, 3, e201900618.	2.8	42

#	Article	IF	CITATIONS
37	Endogenous Oils Derived From Human Adipocytes Are Potent Adjuvants That Promote IL-1α–Dependent Inflammation. Diabetes, 2014, 63, 2037-2050.	0.6	38
38	Toll-like Receptor 2 Facilitates Oxidative Damage-Induced Retinal Degeneration. Cell Reports, 2020, 30, 2209-2224.e5.	6.4	36
39	IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. Journal of Neuroinflammation, 2019, 16, 251.	7.2	34
40	Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight, 2019, 4, .	5.0	33
41	Attenuated CSFâ€1R signalling drives cerebrovascular pathology. EMBO Molecular Medicine, 2021, 13, e12889.	6.9	32
42	IL-18 Immunotherapy for Neovascular AMD: Tolerability and Efficacy in Nonhuman Primates. , 2015, 56, 5424.		31
43	Involvement of MAPKs in Endostatin-Mediated Regulation of Blood-Retinal Barrier Function. Current Eye Research, 2006, 31, 1033-1045.	1.5	29
44	Modulating the paracellular pathway at the blood–brain barrier: current and future approaches for drug delivery to the CNS. Drug Discovery Today: Technologies, 2016, 20, 35-39.	4.0	28
45	Blood-brain barrier dysfunction in a boxer with chronic traumatic encephalopathy and schizophrenia., 2019, 38, 51-58.		28
46	S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurgical Review, 2022, 45, 1171-1193.	2.4	28
47	Multi-Directional Dynamic Model for Traumatic Brain Injury Detection. Journal of Neurotrauma, 2020, 37, 982-993.	3.4	27
48	Enhancement of Outflow Facility in the Murine Eye by Targeting Selected Tight-Junctions of Schlemm's Canal Endothelia. Scientific Reports, 2017, 7, 40717.	3.3	25
49	The blood brain barrier: Insights from development and ageing. Tissue Barriers, 2017, 5, e1373897.	3.2	23
50	Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochemical Pharmacology, 2019, 164, 321-325.	4.4	22
51	An eye on the future of inflammasomes and drug development in AMD. Journal of Molecular Medicine, 2013, 91, 1059-1070.	3.9	21
52	Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Molecular Therapy, 2021, 29, 2041-2052.	8.2	20
53	Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood–Brain Barrier. Biological and Pharmaceutical Bulletin, 2021, 44, 1380-1390.	1.4	20
54	First-in-class thyrotropin-releasing hormone (TRH)-based compound binds to a pharmacologically distinct TRH receptor subtype in human brain and is effective in neurodegenerative models. Neuropharmacology, 2015, 89, 193-203.	4.1	18

#	Article	IF	Citations
55	Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opinion on Drug Delivery, 2010, 7, 859-869.	5.0	16
56	Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Progress in Retinal and Eye Research, 2018, 62, 120-133.	15.5	16
57	Permeability of the Blood–Brain Barrier after Traumatic Brain Injury: Radiological Considerations. Journal of Neurotrauma, 2022, 39, 20-34.	3.4	16
58	Minocycline suppresses disease-associated microglia (DAM) in a model of photoreceptor cell degeneration. Experimental Eye Research, 2022, 217, 108953.	2.6	15
59	Antioxidant Therapy for Retinal Disease. Advances in Experimental Medicine and Biology, 2014, 801, 783-789.	1.6	14
60	Tight Junctions of the Neurovascular Unit. Frontiers in Molecular Neuroscience, 2021, 14, 752781.	2.9	14
61	Altered expression and interaction of adherens junction proteins in the developing OLM of the Rho(\hat{a} '/ \hat{a} ') mouse. Experimental Eye Research, 2007, 85, 714-720.	2.6	13
62	Vascular Expression of Permeability-Resistant Occludin Mutant Preserves Visual Function in Diabetes. Diabetes, 2021, 70, 1549-1560.	0.6	13
63	Fibrotic Changes to Schlemm's Canal Endothelial Cells in Glaucoma. International Journal of Molecular Sciences, 2021, 22, 9446.	4.1	13
64	Recurrent <i>de novo</i> mutations in <i>CLDN5</i> induce an anion-selective blood–brain barrier and alternating hemiplegia. Brain, 2022, 145, 3374-3382.	7.6	13
65	IL-18: a new player in immunotherapy for age-related macular degeneration?. Expert Review of Clinical Immunology, 2014, 10, 1273-1275.	3.0	12
66	Advanced late-onset retinitis pigmentosa with dominant-acting D477G RPE65 mutation is responsive to oral synthetic retinoid therapy. BMJ Open Ophthalmology, 2020, 5, e000462.	1.6	11
67	Inner Blood-Retinal Barrier Regulation in Retinopathies. Advances in Experimental Medicine and Biology, 2019, 1185, 329-333.	1.6	11
68	Age-related changes in eye morphology and aqueous humor dynamics in DBA/2J mice using contrast-enhanced ocular MRI. Magnetic Resonance Imaging, 2019, 59, 10-16.	1.8	10
69	siRNA targeting Schlemm's canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Molecular Therapy - Methods and Clinical Development, 2021, 20, 86-94.	4.1	10
70	Reply to IL-18 is not therapeutic for neovascular age-related macular degeneration. Nature Medicine, 2014, 20, 1376-1377.	30.7	8
71	Properties and Therapeutic Implications of an Enigmatic D477G RPE65 Variant Associated with Autosomal Dominant Retinitis Pigmentosa. Genes, 2020, 11, 1420.	2.4	8
72	Reversible and Size-Selective Opening of the Inner Blood-Retina Barrier: A Novel Therapeutic Strategy. Advances in Experimental Medicine and Biology, 2010, 664, 301-308.	1.6	8

#	Article	IF	Citations
73	Calpain and Photoreceptor Apoptosis. Advances in Experimental Medicine and Biology, 2012, 723, 547-552.	1.6	8
74	Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain, 2022, 145, 2049-2063.	7.6	8
75	RNAi-mediated barrier modulation: synergies of the brain and eye. Therapeutic Delivery, 2010, 1, 587-594.	2.2	7
76	An Overview of the Involvement of Interleukin-18 in Degenerative Retinopathies. Advances in Experimental Medicine and Biology, 2014, 801, 409-415.	1.6	7
77	Barrier Modulation in Drug Delivery to the Retina. Methods in Molecular Biology, 2012, 935, 371-380.	0.9	7
78	Inner blood-retina barrier involvement in dry age-related macular degeneration (AMD) pathology. Neural Regeneration Research, 2020, 15, 1656.	3.0	7
79	From RNA interference technology to effective therapy: how far have we come and how far to go?. Therapeutic Delivery, 2011, 2, 1395-1406.	2.2	6
80	Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight, 2021, 6, .	5.0	6
81	On Further Development of Barrier Modulation as a Technique for Systemic Ocular Drug Delivery. Advances in Experimental Medicine and Biology, 2012, 723, 155-159.	1.6	5
82	Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Reports Medicine, 2022, 3, 100497.	6.5	4
83	Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochirurgica, 2021, 163, 1457-1467.	1.7	3
84	Interleukin-18 Bioactivity and Dose: Data Interpretation at a Crossroads. Investigative Ophthalmology and Visual Science, 2014, 55, 8349-8350.	3.3	2
85	Fundamentals of Brain–Barrier Anatomy and Global Functions. , 2019, , 3-20.		2
86	Intracameral Delivery of AAV to Corneal Endothelium for Expression of Secretory Proteins. Methods in Molecular Biology, 2019, 1950, 263-270.	0.9	2
87	The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 69-87.	0.1	2
88	SARM1 Promotes Photoreceptor Degeneration in an Oxidative Stress Model of Retinal Degeneration. Frontiers in Neuroscience, 2022, 16, 852114.	2.8	2
89	Author Response: The Role of IL-18 in the Treatment of AMD. , 2015, 56, 8237.		1
90	Pharmacokinetics of Systemic Drug Delivery. , 2019, , 39-56.		O

#	Article	lF	CITATIONS
91	Molecular Medicines. SpringerBriefs in Genetics, 2012, , 31-46.	0.1	0
92	Decreased CSF1R Signaling and the Accumulation of Reticular Pseudo-Drusen?. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, 666-671.	0.7	0