Agnieszka Wykowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8771733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social. Frontiers in Psychology, 2017, 8, 1663.	2.1	178
2	l See What You Mean: How Attentional Selection Is Shaped by Ascribing Intentions to Others. PLoS ONE, 2012, 7, e45391.	2.5	163
3	Beliefs about the Minds of Others Influence How We Process Sensory Information. PLoS ONE, 2014, 9, e94339.	2.5	122
4	Embodied artificial agents for understanding human social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150375.	4.0	118
5	Do We Adopt the Intentional Stance Toward Humanoid Robots?. Frontiers in Psychology, 2019, 10, 450.	2.1	110
6	How you move is what you see: Action planning biases selection in visual search Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1755-1769.	0.9	98
7	From social brains to social robots: applying neurocognitive insights to human–robot interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180024.	4.0	95
8	Believing androids – fMRI activation in the right temporo-parietal junction is modulated by ascribing intentions to non-human agents. Social Neuroscience, 2017, 12, 582-593.	1.3	52
9	Adopting the intentional stance toward natural and artificial agents. Philosophical Psychology, 2020, 33, 369-395.	0.9	49
10	iCub: The not-yet-finished story of building a robot child. Science Robotics, 2017, 2, .	17.6	47
11	Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials (ERPs). Brain Research, 2007, 1138, 136-147.	2.2	45
12	Risk Perception and Media in Shaping Protective Behaviors: Insights From the Early Phase of COVID-19 Italian Outbreak. Frontiers in Psychology, 2020, 11, 563426.	2.1	45
13	On the role of eye contact in gaze cueing. Scientific Reports, 2018, 8, 17842.	3.3	42
14	Attribution of intentional agency towards robots reduces one's own sense of agency. Cognition, 2020, 194, 104109.	2.2	40
15	Humans are Well Tuned to Detecting Agents Among Non-agents: Examining the Sensitivity of Human Perception to Behavioral Characteristics of Intentional Systems. International Journal of Social Robotics, 2015, 7, 767-781.	4.6	39
16	On the Temporal Relation of Top–Down and Bottom–Up Mechanisms during Guidance of Attention. Journal of Cognitive Neuroscience, 2010, 22, 640-654.	2.3	38
17	Irrelevant Singletons in Visual Search Do Not Capture Attention but Can Produce Nonspatial Filtering Costs. Journal of Cognitive Neuroscience, 2011, 23, 645-660.	2.3	38
18	What We Observe Is Biased by What Other People Tell Us: Beliefs about the Reliability of Gaze Behavior Modulate Attentional Orienting to Gaze Cues. PLoS ONE, 2014, 9, e94529.	2.5	37

Agnieszka Wykowska

#	Article	IF	CITATIONS
19	The human brain reveals resting state activity patterns that are predictive of biases in attitudes toward robots. Science Robotics, 2020, 5, .	17.6	36
20	Social Robots to Test Flexibility of Human Social Cognition. International Journal of Social Robotics, 2020, 12, 1203-1211.	4.6	35
21	It's in the Eyes: The Engaging Role of Eye Contact in HRI. International Journal of Social Robotics, 2021, 13, 525-535.	4.6	35
22	Implications of Robot Actions for Human Perception. How Do We Represent Actions of the Observed Robots?. International Journal of Social Robotics, 2014, 6, 357-366.	4.6	34
23	Examining joint attention with the use of humanoid robots-A new approach to study fundamental mechanisms of social cognition. Psychonomic Bulletin and Review, 2020, 27, 217-236.	2.8	34
24	Robot-Assisted Training of Joint Attention Skills in Children Diagnosed with Autism. Lecture Notes in Computer Science, 2015, , 296-305.	1.3	34
25	Intentional Mindset Toward Robots—Open Questions and Methodological Challenges. Frontiers in Robotics and Al, 2018, 5, 139.	3.2	30
26	Action Intentions Modulate Allocation of Visual Attention: Electrophysiological Evidence. Frontiers in Psychology, 2012, 3, 379.	2.1	29
27	Gaze Following Is Modulated by Expectations Regarding Others' Action Goals. PLoS ONE, 2015, 10, e0143614.	2.5	28
28	Autistic traits and sensitivity to human-like features of robot behavior. Interaction Studies, 2015, 16, 219-248.	0.6	24
29	Robot Faces that Follow Gaze Facilitate Attentional Engagement and Increase Their Likeability. Frontiers in Psychology, 2018, 9, 70.	2.1	24
30	The Importance of Mutual Gaze in Human-Robot Interaction. Lecture Notes in Computer Science, 2017, , 443-452.	1.3	23
31	In natural interaction with embodied robots, we prefer it when they follow our gaze: a gaze-contingent mobile eyetracking study. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180036.	4.0	23
32	Robots as Mirrors of the Human Mind. Current Directions in Psychological Science, 2021, 30, 34-40.	5.3	23
33	Action-induced effects on perception depend neither on element-level nor on set-level similarity between stimulus and response sets. Attention, Perception, and Psychophysics, 2011, 73, 1034-1041.	1.3	20
34	Mutual gaze with a robot affects human neural activity and delays decision-making processes. Science Robotics, 2021, 6, eabc5044.	17.6	20
35	Eye contact during joint attention with a humanoid robot modulates oscillatory brain activity. Social Cognitive and Affective Neuroscience, 2021, 16, 383-392.	3.0	19
36	Individual Differences in Attitude Toward Robots Predict Behavior in Human-Robot Interaction. Lecture Notes in Computer Science, 2019, , 64-73.	1.3	18

#	Article	IF	CITATIONS
37	When to engage in interaction — And how? EEG-based enhancement of robot's ability to sense social signals in HRI. , 2014, , .		15
38	Perception and Action as Two Sides of the Same Coin. A Review of the Importance of Action-Perception Links in Humans for Social Robot Design and Research. International Journal of Social Robotics, 2012, 4, 5-14.	4.6	14
39	Adopting the Intentional Stance Towards Humanoid Robots. Springer Tracts in Advanced Robotics, 2019, , 119-136.	0.4	14
40	Repetitive Robot Behavior Impacts Perception of Intentionality and Gaze-Related Attentional Orienting. Frontiers in Robotics and AI, 2020, 7, 565825.	3.2	14
41	Response Coordination Emerges in Cooperative but Not Competitive Joint Task. Frontiers in Psychology, 2018, 9, 1919.	2.1	13
42	Human vs Humanoid. A Behavioral Investigation of the Individual Tendency to Adopt the Intentional Stance. , 2021, , .		12
43	Train with Me: A Study Comparing a Socially Assistive Robot and a Virtual Agent for a Rehabilitation Task. Lecture Notes in Computer Science, 2019, , 453-463.	1.3	12
44	At first sight: robots' subtle eye movement parameters affect human attentional engagement, spontaneous attunement and perceived human-likeness. Paladyn, 2020, 11, 31-39.	2.7	12
45	Context heterogeneity has a sustained impact on attention deployment: Behavioral and electrophysiological evidence. Psychophysiology, 2013, 50, 722-733.	2.4	11
46	Expectations regarding action sequences modulate electrophysiological correlates of the gaze ueing effect. Psychophysiology, 2017, 54, 942-954.	2.4	11
47	Imaging When Acting: Picture but Not Word Cues Induce Action-Related Biases of Visual Attention. Frontiers in Psychology, 2012, 3, 388.	2.1	10
48	Motivation Modulates Visual Attention: Evidence from Pupillometry. Frontiers in Psychology, 2013, 4, 59.	2.1	10
49	Using a Gaze-Cueing Paradigm to Examine Social Cognitive Mechanisms of Individuals with Autism Observing Robot and Human Faces. Lecture Notes in Computer Science, 2014, , 370-379.	1.3	10
50	More Than You Expect: Priors Influence on the Adoption of Intentional Stance Toward Humanoid Robots. Lecture Notes in Computer Science, 2019, , 119-129.	1.3	10
51	ERP markers of action planning and outcome monitoring in human – robot interaction. Acta Psychologica, 2021, 212, 103216.	1.5	9
52	TobiiGlassesPySuite. , 2019, , .		7
53	Intentions with actions: The role of intentionality attribution on the vicarious sense of agency in Human–Robot interaction. Quarterly Journal of Experimental Psychology, 2022, 75, 616-632.	1.1	7
54	Reduced Sense of Agency in Human-Robot Interaction. Lecture Notes in Computer Science, 2018, , 441-450.	1.3	6

#	Article	IF	CITATIONS
55	Focusing on the face or getting distracted by social signals? The effect of distracting gestures on attentional focus in natural interaction. Psychological Research, 2021, 85, 491-502.	1.7	6
56	Mind the Eyes: Artificial Agents' Eye Movements Modulate Attentional Engagement and Anthropomorphic Attribution. Frontiers in Robotics and AI, 2021, 8, 642796.	3.2	6
57	I Am Looking for Your Mind: Pupil Dilation Predicts Individual Differences in Sensitivity to Hints of Human-Likeness in Robot Behavior. Frontiers in Robotics and AI, 2021, 8, 653537.	3.2	6
58	Training Autistic Children on Joint Attention Skills with a Robot. Lecture Notes in Computer Science, 2018, , 86-92.	1.3	6
59	Theory of Mind and Joint Attention. , 2021, , 311-348.		6
60	The Effect of Individual Differences and Repetitive Interactions on Explicit and Implicit Attitudes Towards Robots. Lecture Notes in Computer Science, 2020, , 466-477.	1.3	6
61	Joint action with artificial agents: Human-likeness in behaviour and morphology affects sensorimotor signaling and social inclusion. Computers in Human Behavior, 2022, 132, 107237.	8.5	6
62	How Humans Optimize Their Interaction with the Environment: The Impact ofÂAction Context onÂHuman Perception. International Journal of Social Robotics, 2011, 3, 223-231.	4.6	5
63	Humans Socially Attune to Their "Follower―Robot. , 2019, , .		5
64	Robot Gaze Behavior Affects Honesty in Human-Robot Interaction. Frontiers in Artificial Intelligence, 2021, 4, 663190.	3.4	5
65	Toward an Attentive Robotic Architecture: Learning-Based Mutual Gaze Estimation in Human–Robot Interaction. Frontiers in Robotics and Al, 2022, 9, 770165.	3.2	5
66	Distract yourself: prediction of salient distractors by own actions and external cues. Psychological Research, 2019, 83, 159-174.	1.7	4
67	Attributing Human-Likeness to an Avatar: The Role of Time and Space in the Perception of Biological Motion. Lecture Notes in Computer Science, 2018, , 400-409.	1.3	3
68	How Humans Optimize Their Interaction with the Environment: The Impact of Action Context on Human Perception. Communications in Computer and Information Science, 2009, , 162-172.	0.5	3
69	Does Observing Artificial Robotic Systems Influence Human Perceptual Processing in the Same Way as Observing Humans?. Lecture Notes in Computer Science, 2012, , 327-337.	1.3	3
70	The Intentional Stance Test-2: How to Measure the Tendency to Adopt Intentional Stance Towards Robots. Frontiers in Robotics and AI, 2021, 8, 666586.	3.2	3
71	Exposure to Robotic Virtual Agent Affects Adoption of Intentional Stance. , 2021, , .		3
72	Editorial: Computational Approaches for Human-Human and Human-Robot Social Interactions. Frontiers in Robotics and Al, 2020, 7, 55.	3.2	2

#	Article	IF	CITATIONS
73	Robots Improve Judgments on Self-generated Actions: An Intentional Binding Study. Lecture Notes in Computer Science, 2019, , 88-97.	1.3	2
74	Irrelevant Robot Signals in a Categorization Task Induce Cognitive Conflict in Performance, Eye Trajectories, the N2 Component of the EEG Signal, and Frontal Theta Oscillations. Journal of Cognitive Neuroscience, 2021, 34, 108-126.	2.3	2
75	Motor behaviour mimics the gaze response in establishing joint attention, but is moderated by individual differences in adopting the intentional stance towards a robot avatar. Visual Cognition, 2022, 30, 42-53.	1.6	2
76	Cultural Values, but not Nationality, Predict Social Inclusion of Robots. Lecture Notes in Computer Science, 2021, , 48-57.	1.3	2
77	Robot's Social Gaze Affects Conflict Resolution but not Conflict Adaptations. Journal of Cognition, 2022, 5, .	1.4	2
78	Cognitive and Social Neuroscience Methods for HRI. , 2018, , .		1
79	Upper limb exercise with physical and virtual robots: Visual sensitivity affects task performance. Paladyn, 2021, 12, 199-213.	2.7	1
80	The Personality of a Robot. An Adaptation of the HEXACO – 60 as a Tool for HRI. Lecture Notes in Computer Science, 2021, , 707-717.	1.3	1
81	Social Cognition for HRI. , 2020, , .		1
82	Modulating the Intentional Stance: Humanoid Robots, Narrative and Autistic Traits. Lecture Notes in Computer Science, 2021, , 697-706.	1.3	1
83	Misleading Robot Signals in a Classification Task Induce Cognitive Load as Measured by Theta Synchronization Between Frontal and Temporo-parietal Brain Regions. Frontiers in Neuroergonomics, 0, 3, .	1.1	1
84	Modality-specific interference between action planning and perceptual processing. Journal of Cognitive Psychology, 2018, 30, 77-84.	0.9	0
85	Selecting When Acting: How Human Perception Is Tuned to Action Goals and How Robotics Can Benefit from That. Lecture Notes in Computer Science, 2010, , 275-284.	1.3	0
86	Deployment of Spatial Attention towards Locations in Memory Representations. An EEG Study. PLoS ONE, 2013, 8, e83856.	2.5	0
87	Does attributing mental states to a robot influence accessibility of information represented during reading?. Acta Psychologica, 2022, 228, 103660.	1.5	0