James Curran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8771697/publications.pdf

Version: 2024-02-01

331538 345118 1,517 63 21 36 citations h-index g-index papers 67 67 67 652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Developing allelic and stutter peak height models for a continuous method of DNA interpretation. Forensic Science International: Genetics, 2013, 7, 296-304.	1.6	130
2	A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci. Nucleic Acids Research, 2005, 33, 632-643.	6.5	107
3	LoComatioN: A software tool for the analysis of low copy number DNA profiles. Forensic Science International, 2007, 166, 128-138.	1.3	99
4	Interpreting DNA Mixtures in Structured Populations. Journal of Forensic Sciences, 1999, 44, 987-995.	0.9	82
5	Population-specific F values for forensic STR markers: A worldwide survey. Forensic Science International: Genetics, 2016, 23, 91-100.	1.6	73
6	Searching mixed DNA profiles directly against profile databases. Forensic Science International: Genetics, 2014, 9, 102-110.	1.6	62
7	Degradation of forensic DNA profiles. Australian Journal of Forensic Sciences, 2013, 45, 445-449.	0.7	56
8	A comparison of statistical models for the analysis of complex forensic DNA profiles. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 66-70.	1.3	54
9	An introduction to Bayesian credible intervals for sampling error in DNA profiles. Law, Probability and Risk, 2005, 4, 115-126.	1.2	50
10	A novel bacterial community index to assess stream ecological health. Freshwater Biology, 2015, 60, 1988-2002.	1.2	47
11	A MCMC method for resolving two person mixtures. Science and Justice - Journal of the Forensic Science Society, 2008, 48, 168-177.	1.3	45
12	The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation. Forensic Science International: Genetics, 2014, 12, 208-214.	1.6	44
13	What is the magnitude of the subpopulation effect?. Forensic Science International, 2003, 135, 1-8.	1.3	43
14	Effectiveness of familial searches. Science and Justice - Journal of the Forensic Science Society, 2008, 48, 164-167.	1.3	42
15	A series of recommended tests when validating probabilistic DNA profile interpretation software. Forensic Science International: Genetics, 2015, 14, 125-131.	1.6	36
16	An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations. Forensic Science International: Genetics, 2014, 11, 56-63.	1.6	34
17	Inclusion Probabilities and Dropout. Journal of Forensic Sciences, 2010, 55, 1171-1173.	0.9	29
18	How reliable is the sub-population model in DNA testimony?. Forensic Science International, 2006, 157, 144-148.	1.3	27

#	Article	IF	Citations
19	Helping formulate propositions in forensic DNA analysis. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 258-261.	1.3	27
20	The variability in likelihood ratios due to different mechanisms. Forensic Science International: Genetics, 2015, 14, 187-190.	1.6	27
21	Utilising allelic dropout probabilities estimated by logistic regression in casework. Forensic Science International: Genetics, 2014, 9, 9-11.	1.6	23
22	Likelihood ratio development for mixed Y-STR profiles. Forensic Science International: Genetics, 2018, 35, 82-96.	1.6	22
23	Novel LIBS method for microâ€spatial chemical analysis of inorganic gunshot residues. Journal of Chemometrics, 2021, 35, .	0.7	21
24	A probabilistic approach for the interpretation of RNA profiles as cell type evidence. Forensic Science International: Genetics, 2016, 20, 30-44.	1.6	20
25	Variability of mixed DNA profiles separated on a 3130 and 3500 capillary electrophoresis instrument. Australian Journal of Forensic Sciences, 2014, 46, 304-312.	0.7	19
26	Admitting to uncertainty in the LR. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 380-382.	1.3	17
27	Investigation into stutter ratio variability between different laboratories. Forensic Science International: Genetics, 2014, 13, 79-81.	1.6	16
28	An investigation into the performance of methods for adjusting for sampling uncertainty in DNA likelihood ratio calculations. Forensic Science International: Genetics, 2011, 5, 512-516.	1.6	15
29	Uncertainty in the number of contributors for the European Standard Set of loci. Forensic Science International: Genetics, 2014, 11, 205-206.	1.6	14
30	Importance sampling allows Hd true tests of highly discriminating DNA profiles. Forensic Science International: Genetics, 2017, 27, 74-81.	1.6	14
31	A comparison of likelihood ratios obtained from EuroForMix and STRmixâ,, ¢. Journal of Forensic Sciences, 2021, 66, 2138-2155.	0.9	14
32	When evaluating DNA evidence within a likelihood ratio framework, should the propositions be exhaustive?. Forensic Science International: Genetics, 2021, 50, 102406.	1.6	13
33	Evaluation of organic and inorganic gunshot residues in various populations using LC-MS/MS. Forensic Chemistry, 2022, 27, 100389.	1.7	13
34	Is forensic science the last bastion of resistance against statistics?. Science and Justice - Journal of the Forensic Science Society, 2013, 53, 251-252.	1.3	12
35	A response to "Likelihood ratio as weight of evidence: A closer look―by Lund and Iyer. Forensic Science International, 2018, 288, e15-e19.	1.3	12
36	Comparing multiple POI to DNA mixtures. Forensic Science International: Genetics, 2021, 52, 102481.	1.6	12

#	Article	IF	CITATIONS
37	Modelling the dependence structure of Y-STR haplotypes using graphical models. Forensic Science International: Genetics, 2018, 37, 29-36.	1.6	11
38	A review of likelihood ratios in forensic science based on a critique of Stiffelman "No longer the Gold standard: Probabilistic genotyping is changing the nature of DNA evidence in criminal trialsâ€∙ Forensic Science International, 2020, 310, 110251.	1.3	11
39	Estimation of Y haplotype frequencies with lower order dependencies. Forensic Science International: Genetics, 2020, 46, 102214.	1.6	10
40	Are low LRs reliable?. Forensic Science International: Genetics, 2020, 49, 102350.	1.6	10
41	Modelling PowerPlex® Y stutter and artefacts. Forensic Science International: Genetics, 2014, 11, 126-136.	1.6	9
42	Empirical support for the reliability of DNA evidence interpretation in Australia and New Zealand. Australian Journal of Forensic Sciences, 2008, 40, 99-108.	0.7	8
43	Modeling allelic analyte signals for aSTRs in NGS DNA profiles. Journal of Forensic Sciences, 2021, 66, 1234-1245.	0.9	8
44	Evidence in Support of Self-Declaration as a Sampling Method for the Formation of Sub-Population DNA Databases. Journal of Forensic Sciences, 2003, 48, 1-3.	0.9	8
45	The appropriate use of subpopulation corrections for differences in endogamous communities. Forensic Science International, 2007, 168, 106-111.	1.3	7
46	Statistics in forensic science. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1, 141-156.	2.1	7
47	Testing whether stutter and low-level DNA peaks are additive. Forensic Science International: Genetics, 2019, 43, 102166.	1.6	7
48	Are DNA Profiles as Rare as we Think? Or Can we Trust DNA Statistics?. Significance, 2010, 7, 62-66.	0.3	6
49	Multi-element comparisons of tapes evidence using dimensionality reduction for calculating likelihood ratios. Forensic Science International, 2019, 301, 426-434.	1.3	6
50	Variability and additivity of read counts for aSTRs in NGS DNA profiles. Forensic Science International: Genetics, 2020, 48, 102351.	1.6	5
51	Examining the additivity of peak heights in forensic DNA profiles. Australian Journal of Forensic Sciences, 2020, , 1-15.	0.7	4
52	Relaxing the assumption of unrelatedness in the numerator and denominator of likelihood ratios for DNA mixtures. Forensic Science International: Genetics, 2021, 51, 102434.	1.6	4
53	A mixed DNA profile controversy revisited. Journal of Forensic Sciences, 2021, , .	0.9	4
54	The extent of substructure in the indigenous Australian population and its impact on DNA evidence interpretation. International Congress Series, 2006, 1288, 382-384.	0.2	3

#	Article	IF	CITATIONS
55	Drawbacks in the scientification of forensic science. Forensic Science International, 2014, 245, e38-e40.	1.3	3
56	Genetic matches and the logic of the law. Genetica, 1999, 105, 211-213.	0.5	1
57	Weight-of-Evidence for Forensic DNA Profiles, by David J. Balding: John Wiley and Sons, Ltd., 2005; 198 pp Law, Probability and Risk, 2005, 4, 191-193.	1.2	1
58	Geographical variation of shoeprint comparison class correspondences. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 335-337.	1.3	1
59	Categorical methods for the interpretation of RNA profiles as cell type evidence and their limitations. Forensic Science International: Genetics Supplement Series, 2015, 5, e305-e307.	0.1	1
60	DNAtools: Tools for Analysing Forensic Genetic DNA Data. Journal of Open Source Software, 2020, 5, 1981.	2.0	1
61	Investigation into stutter ratio variance. Australian Journal of Forensic Sciences, 2014, 46, 313-316.	0.7	O
62	The effect of wild card designations and rare alleles in forensic DNA database searches. Forensic Science International: Genetics, 2015, 16, 98-104.	1.6	0
63	Assessing Sampling Error in DNA Evidence. Security Science and Technology, 2016, , 101-129.	0.5	0