
Danielle Julie Carrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8771122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable Second-Generation Ethanol Production from Switchgrass Biomass via Co-fermentation of Pentoses and Hexoses Using Novel Wild Yeasts. Bioenergy Research, 2022, 15, 1157-1168.	2.2	6
2	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
3	Women in Green Chemistry and Engineering: Agents of Change Toward the Achievement of a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2022, 10, 2859-2862.	3.2	3
4	<i>ACS Sustainable Chemistry & Engineering</i> Welcomes Manuscripts on the Circular Economy of Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 2410-2411.	3.2	5
5	Production and Characterization of High Value Prebiotics From Biorefinery-Relevant Feedstocks. Frontiers in Microbiology, 2021, 12, 675314.	1.5	13
6	ACS Sustainable Chemistry & Engineering Welcomes Manuscripts on Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 4702-4703.	3.2	1
7	A Sequential Autohydrolysis-Ionic Liquid Fractionation Process for High Quality Lignin Production. Energy & Fuels, 2021, 35, 2293-2302.	2.5	8
8	Effective Assessment Practices for Using Sustainability Metrics: Biomass Processing. ACS Sustainable Chemistry and Engineering, 2021, 9, 14654-14656.	3.2	2
9	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
10	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
11	Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: a response surface approach. Bioresources and Bioprocessing, 2020, 7, .	2.0	55
12	Understanding the <i>in situ</i> state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals. Green Chemistry, 2020, 22, 6748-6766.	4.6	18
13	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
14	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	3.2	2
15	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	3.2	0
16	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	3.2	0
17	Investigating the effects of hemicellulose pre-extraction on the production and characterization of loblolly pine nanocellulose. Cellulose, 2020, 27, 3693-3706.	2.4	33
18	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	3.2	5

#	Article	IF	CITATIONS
19	Sustainable Hydrogels Based on Lignin-Methacrylate Copolymers with Enhanced Water Retention and Tunable Material Properties. Biomacromolecules, 2018, 19, 2665-2672.	2.6	34
20	Statistical Approach for the Identification of Cellulolytic Enzyme Inhibitors Using Switchgrass Dilute Acid Prehydrolyzates as a Model System. ACS Sustainable Chemistry and Engineering, 2018, 6, 3443-3452.	3.2	10
21	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	3.2	34
22	Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions. Biotechnology for Biofuels, 2018, 11, 265.	6.2	19
23	Effects of Oligosaccharides Isolated From Pinewood Hot Water Pre-hydrolyzates on Recombinant Cellulases. Frontiers in Bioengineering and Biotechnology, 2018, 6, 55.	2.0	13
24	Phytochemical Recovery for Valorization of Loblolly Pine and Sweetgum Bark Residues. ACS Sustainable Chemistry and Engineering, 2017, 5, 4258-4266.	3.2	8
25	<i>ACS Sustainable Chemistry & Engineering</i> 's Impact Factor Continues To Rise. ACS Sustainable Chemistry and Engineering, 2017, 5, 5617-5617.	3.2	Ο
26	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	3.2	8
27	Beneficial effects of Trametes versicolor pretreatment on saccharification and lignin enrichment of organosolv-pretreated pinewood. RSC Advances, 2017, 7, 45652-45661.	1.7	10
28	Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review. Bioenergy Research, 2017, 10, 1138-1154.	2.2	28
29	Insights into <i>exo</i> -Cellulase Inhibition by the Hot Water Hydrolyzates of Rice Straw. ACS Sustainable Chemistry and Engineering, 2016, 4, 3627-3633.	3.2	29
30	Effects of Dilute Acid Pretreatment Parameters on Sugar Production during Biochemical Conversion of Switchgrass Using a Full Factorial Design. ACS Sustainable Chemistry and Engineering, 2016, 4, 4124-4130.	3.2	24
31	Loblolly pine (Pinus taedaL.) essential oil yields affected by environmental and physiological changes. Journal of Sustainable Forestry, 2016, 35, 417-430.	0.6	5
32	Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis. AIMS Bioengineering, 2016, 3, 389-399.	0.6	14
33	Separation of xylose oligomers from autohydrolyzed Miscanthus×giganteus using centrifugal partition chromatography. Food and Bioproducts Processing, 2015, 95, 125-132.	1.8	13
34	Applications of Trametes versicolor crude culture filtrates in detoxification of biomass pretreatment hydrolyzates. Bioresource Technology, 2015, 189, 99-106.	4.8	28
35	Production and Fractionation of Xylose Oligomers from Switchgrass Hemicelluloses Using Centrifugal Partition Chromatography. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 801-809.	0.5	9
36	Kinetic Modeling of Switchgrass-Derived Xylose Oligomers Degradation during Pretreatment in Dilute Acid or in Water. ACS Sustainable Chemistry and Engineering, 2015, 3, 2030-2035.	3.2	7

#	Article	IF	CITATIONS
37	Insights into biological delignification of rice straw by Trametes hirsuta and Myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass and Bioenergy, 2015, 76, 54-60.	2.9	42
38	Understanding the Pine Dilute Acid Pretreatment System for Enhanced Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 2423-2428.	3.2	27
39	Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering. Journal of Biosystems Engineering, 2015, 40, 373-393.	1.2	35
40	Effects of Harvest and Storage of Switchgrass on the Recovery of Carbohydrates during Dilute Acid Pretreatment and Enzymatic Hydrolysis. Forage and Grazinglands, 2014, 12, 1-6.	0.2	0
41	Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy, 2014, 62, 222-227.	2.9	113
42	Kinetic Modeling of Xylose Oligomer Degradation during Pretreatment in Dilute Acid or in Water. Industrial & Engineering Chemistry Research, 2014, 53, 2219-2228.	1.8	22
43	Poplar (<i>Populus deltoides</i> L.): The Effect of Washing Pretreated Biomass on Enzymatic Hydrolysis and Fermentation to Ethanol. ACS Sustainable Chemistry and Engineering, 2014, 2, 1835-1842.	3.2	26
44	Characterization of Rice Straw Prehydrolyzates and Their Effect on the Hydrolysis of Model Substrates Using a Commercial <i>endo</i> -Cellulase, β-Glucosidase and Cellulase Cocktail. ACS Sustainable Chemistry and Engineering, 2014, 2, 2124-2130.	3.2	17
45	Characterization and Variation of Essential Oil fromPinus taedaand Antimicrobial Effects against Antibiotic-Resistant and -SusceptibleStaphylococcus aureus. Forest Products Journal, 2014, 64, 161-165.	0.2	4
46	Separation of xylose oligomers using centrifugal partition chromatography with a butanol–methanol–water system. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 51-62.	1.4	14
47	Effect of Formic Acid and Furfural on the Enzymatic Hydrolysis of Cellulose Powder and Dilute Acid-Pretreated Poplar Hydrolysates. ACS Sustainable Chemistry and Engineering, 2013, 1, 23-28.	3.2	36
48	Plant Maturity Effects on the Physicochemical Properties and Dilute Acid Hydrolysis of Switchgrass (<i>Panicum virgatum</i> , L.) Hemicelluloses. ACS Sustainable Chemistry and Engineering, 2013, 1, 649-654.	3.2	13
49	Hot water and dilute acid pretreatment of high and low specific gravity Populus deltoides clones. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 355-361.	1.4	12
50	Separation and purification of xylose oligomers using centrifugal partition chromatography. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 363-370.	1.4	19
51	Sweetgum (Liquidambar styraciflua L.): Extraction of Shikimic Acid Coupled to Dilute Acid Pretreatment. Applied Biochemistry and Biotechnology, 2010, 162, 1660-1668.	1.4	33
52	Comparing extraction methods to recover ginseng saponins from American ginseng (Panax) Tj ETQq0 0 0 rgBT / verification. Separation and Purification Technology, 2010, 72, 1-6.	Overlock 1 3.9	10 Tf 50 147 1 32
53	Extraction of Co-Products from Biomass: Example of Thermal Degradation of Silymarin Compounds in Subcritical Water. Applied Biochemistry and Biotechnology, 2009, 158, 362-373.	1.4	20
54	Switchgrass Water Extracts: Extraction, Separation and Biological Activity of Rutin and Quercitrin. Journal of Agricultural and Food Chemistry, 2009, 57, 7763-7770.	2.4	40

DANIELLE JULIE CARRIER

#	Article	IF	CITATIONS
55	Policosanol, α-Tocopherol, and Moisture Content as a Function of Timing of Harvest of Switchgrass (Panicum virgatum L.). Journal of Agricultural and Food Chemistry, 2009, 57, 3500-3505.	2.4	12
56	Pretreatment of milk thistle seed to increase the silymarin yield: An alternative to petroleum ether defatting. Bioresource Technology, 2008, 99, 2501-2506.	4.8	23
57	Separation of Silymarins from Milk Thistle (Silybum Marianum L.) Extracted with Pressurized Hot Water using Fast Centrifugal Partition Chromatography. Journal of Liquid Chromatography and Related Technologies, 2008, 31, 3001-3011.	0.5	20
58	Milk Thistle Extracts Inhibit the Oxidation of Low-Density Lipoprotein (LDL) and Subsequent Scavenger Receptor-Dependent Monocyte Adhesion. Journal of Agricultural and Food Chemistry, 2008, 56, 3966-3972.	2.4	18
59	Pressurized water versus ethanol as a Silybum marianum extraction solvent for inhibition of low-density lipoprotein oxidation mediated by copper and J774 macrophage cellsThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products Canadian lournal of Physiology and Pharmacology. 2007. 85. 894-902.	0.7	5
60	Effect of Albizia julibrissin Water Extracts on Low-Density Lipoprotein Oxidization. Journal of Agricultural and Food Chemistry, 2007, 55, 4704-4709.	2.4	13
61	Assessing the Clinical Significance of Botanical Supplementation on Human Cytochrome P450 3A Activity: Comparison of a Milk Thistle and Black Cohosh Product to Rifampin and Clarithromycin. Journal of Clinical Pharmacology, 2006, 46, 201-213.	1.0	96
62	Extraction of Hyperoside and Quercitrin From Mimosa (<i>Albizia julibrissin</i>) Foliage. Applied Biochemistry and Biotechnology, 2006, 130, 382-391.	1.4	14
63	Extraction of Hyperoside and Quercitrin From Mimosa (Albizia julibrissin) Foliage. , 2006, , 382-391.		Ο
64	Glucoraphanin extraction fromCardaria draba: Part 1. Optimization of batch extraction. Journal of Chemical Technology and Biotechnology, 2005, 80, 985-991.	1.6	21
65	Glucoraphanin extraction fromCardaria draba: Part 2. Countercurrent extraction, bioactivity and toxicity testing. Journal of Chemical Technology and Biotechnology, 2005, 80, 992-997.	1.6	3
66	Pre- and post-harvest processing of medicinal plants. Plant Genetic Resources: Characterisation and Utilisation, 2005, 3, 304-313.	0.4	58
67	Silymarin Extraction from Milk Thistle Using Hot Water. , 2004, , 559-568.		1
68	Silymarin Extraction from Milk Thistle Using Hot Water. Applied Biochemistry and Biotechnology, 2004, 114, 559-568.	1.4	23
69	Extraction of Antioxidant Compounds from Energy Crops. Applied Biochemistry and Biotechnology, 2004, 114, 569-584.	1.4	24
70	Extraction of Nutraceuticals from Milk Thistle: I. Hot Water Extraction. Applied Biochemistry and Biotechnology, 2003, 108, 881-890.	1.4	23
71	Extraction of Nutraceuticals from Milk Thistle: Part II. Extraction with Organic Solvents. Applied Biochemistry and Biotechnology, 2003, 108, 891-904.	1.4	33
72	Milk Thistle,Silybum marianum(L.) Gaertn., Flower Head Development and Associated Marker Compound Profile. Journal of Herbs, Spices and Medicinal Plants, 2003, 10, 65-74.	0.5	36

#	Article	IF	CITATIONS
73	Localization of Alkamides, Echinacoside and Cynarin withEchinacea angustifolia. Journal of Herbs, Spices and Medicinal Plants, 2003, 10, 73-81.	0.5	11
74	Drying ofEchinacea angustifoliaRoots. Journal of Herbs, Spices and Medicinal Plants, 2003, 10, 11-18.	0.5	7
75	Effects of Drying Temperature and Storage on Parthenolide Concentration of Feverfew (Tanacetum) Tj ETQq1 1 C	.784314 r 0.5	ggT /Overloo
76	HPLC-UV and LC-MS-MS Characterization of Silymarin in Milk Thistle Seeds and Corresponding Products. Journal of Nutraceuticals, Functional and Medical Foods, 2003, 4, 37-48.	0.5	17
77	PHYSICAL CHARACTERISTICS AND DRYING RATE OFECHINACEAROOT. Drying Technology, 2002, 20, 637-649.	1.7	26
78	Echinacoside and Alkamide Distribution inEchinacea angustifoliaRoot. Journal of Nutraceuticals, Functional and Medical Foods, 2001, 3, 95-107.	0.5	5
79	Distribution of ginkgolides and terpenoid biosynthetic activity in Ginkgo biloba. Phytochemistry, 1998, 48, 89-92.	1.4	39
80	Sucrose requirements and lipid utilization during germination of interior spruce (Picea glauca) Tj ETQqO O O rgBT	Overlock	10 Tf 50 462

81	Effect of daptomycin on the barotropic behavior of dioleoylphosphatidylglycerol: an infrared spectroscopic investigation. Chemistry and Physics of Lipids, 1996, 83, 131-140.	1.5	5
82	Gas chromatographic-mass spectrometric characterization of some fatty acids from white and interior spruce. Journal of Chromatography A, 1995, 715, 317-324.	1.8	15
83	Interactions of aminoglycoside antibiotics with phospholipids. A deuterium nuclear magnetic resonance study. Chemistry and Physics of Lipids, 1992, 62, 153-163.	1.5	15
84	Detection of ginkgolide A in Ginkgo biloba cell cultures. Plant Cell Reports, 1991, 10, 256-9.	2.8	29
85	Nutritional and hormonal requirements of Ginkgo biloba embryo-derived callus and suspension cell culture. Plant Cell Reports, 1990, 8, 635-638.	2.8	42
86	Substrate consumption of Methylomonas mucosa. Applied Microbiology and Biotechnology, 1989, 30, 89.	1.7	0
87	Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. , 0, .		11