Erdjan Salih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8771020/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	T95 nucleophosmin phosphorylation as a novel mediator and marker of regulated cell death in acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F552-F561.	2.7	3
2	Engineering Models in Cancer. , 2020, , 458-484.		0
3	Ex-Vivo Model Systems of Cancer-Bone Cell Interactions. Methods in Molecular Biology, 2019, 1914, 217-240.	0.9	4
4	Nucleophosmin Phosphorylation as a Diagnostic and Therapeutic Target for Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 50-62.	6.1	7
5	A method for high transfection efficiency in THP-1 suspension cells without PMA treatment. Analytical Biochemistry, 2018, 544, 93-97.	2.4	6
6	Qualitative and Quantitative Proteome Analysis of Oral Fluids in Health and Periodontal Disease by Mass Spectrometry. Methods in Molecular Biology, 2017, 1537, 37-60.	0.9	3
7	Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells. Clinical and Experimental Metastasis, 2016, 33, 563-588.	3.3	7
8	Effect of Corticotomies with Different Instruments on Cranial Bone Biology Using an Ex Vivo Calvarial Bone Organ Culture Model System. International Journal of Periodontics and Restorative Dentistry, 2016, 36, s123-s136.	1.0	7
9	Quantitative gingival crevicular fluid proteome in health and periodontal disease using stable isotope chemistries and mass spectrometry. Journal of Clinical Periodontology, 2014, 41, 733-747.	4.9	47
10	Topographical distribution of phosphorylation sites of phosvitins by mass spectrometry. Journal of Proteomics, 2013, 83, 76-98.	2.4	11
11	Novel bioactivity of phosvitin in connective tissue and bone organogenesis revealed by live calvarial bone organ culture models. Developmental Biology, 2013, 381, 256-275.	2.0	26
12	Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials, 2012, 33, 1065-1078.	11.4	64
13	Influence of Histatin 5 on <i>Candida albicans</i> Mitochondrial Protein Expression Assessed by Quantitative Mass Spectrometry. Journal of Proteome Research, 2011, 10, 646-655.	3.7	19
14	Quantitative Analysis of Cytokine-Induced Hepatocyte Nuclear Factor-4α Phosphorylation by Mass Spectrometry. Biochemistry, 2011, 50, 5292-5300.	2.5	10
15	Large-scale phosphoproteome of human whole saliva using disulfide–thiol interchange covalent chromatography and mass spectrometry. Analytical Biochemistry, 2010, 407, 19-33.	2.4	50
16	The Isolation and Characterization of Glycosylated Phosphoproteins from Herring Fish Bones. Journal of Biological Chemistry, 2010, 285, 36170-36178.	3.4	5
17	Characterization of Recombinant Lysyl Oxidase Propeptide. Biochemistry, 2010, 49, 2962-2972.	2.5	34
18	Mass Spectrometric Identification of Key Proteolytic Cleavage Sites in Statherin Affecting Mineral Homeostasis and Bacterial Binding Domains. Journal of Proteome Research, 2010, 9, 5413-5421.	3.7	26

Erdjan Salih

#	Article	IF	CITATIONS
19	Activityâ€based mass spectrometric characterization of proteases and inhibitors in human saliva. Proteomics - Clinical Applications, 2009, 3, 810-820.	1.6	29
20	Modulation of Bone Resorption by Phosphorylation State of Bone Sialoprotein. Biochemistry, 2009, 48, 6876-6886.	2.5	19
21	Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metalâ€binding, antifungal, and woundâ€healing properties. FASEB Journal, 2009, 23, 2691-2701.	0.5	54
22	ldentification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. Journal of Cellular Biochemistry, 2008, 103, 852-856.	2.6	17
23	Identification of Lys-Pro-Gln as a Novel Cleavage Site Specificity of Saliva-associated Proteases. Journal of Biological Chemistry, 2008, 283, 19957-19966.	3.4	60
24	Salivary Proteome and Its Genetic Polymorphisms. Annals of the New York Academy of Sciences, 2007, 1098, 22-50.	3.8	160
25	Site-Specific In Vivo Calcification and Osteogenesis Stimulated by Bone Sialoprotein. Calcified Tissue International, 2006, 79, 179-189.	3.1	53
26	Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrometry Reviews, 2005, 24, 828-846.	5.4	122
27	Prokaryotic expression of bone sialoprotein and identification of casein kinase II phosphorylation sites. Biochemical and Biophysical Research Communications, 2005, 333, 443-447.	2.1	9
28	In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions. Journal of Biological Chemistry, 2004, 279, 18115-18120.	3.4	170
29	Complete Topographical Distribution of Both the in Vivo and in Vitro Phosphorylation Sites of Bone Sialoprotein and Their Biological Implications. Journal of Biological Chemistry, 2004, 279, 19808-19815.	3.4	26
30	The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects. European Journal of Orthodontics, 2004, 26, 475-482.	2.4	32
31	Synthesis of a radioactive thiol reagent, 1-S-[3H]carboxymethyl-dithiothreitol: identification of the phosphorylation sites by N-terminal peptide sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Biochemistry, 2003, 319, 143-158.	2.4	9
32	In Vivo and In Vitro Phosphorylation Regions of Bone Sialoprotein. Connective Tissue Research, 2003, 44, 223-229.	2.3	18
33	Bioactive molecules and the future of pulp therapy. American Journal of Dentistry, 2003, 16, 66-76.	0.1	62
34	In vivo and in vitro phosphorylation regions of bone sialoprotein. Connective Tissue Research, 2003, 44 Suppl 1, 223-9.	2.3	4
35	Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochemical Journal, 2002, 364, 465-474.	3.7	35
36	Enamel Specific Protein Kinases and State of Phosphorylation of Purified Amelogenins. Connective Tissue Research, 1998, 38, 225-235.	2.3	12

Erdjan Salih

#	ARTICLE	IF	CITATIONS
37	Isolation of a novel bone glycosylated phosphoprotein with disulphide cross-links to osteonectin. Biochemical Journal, 1998, 330, 1423-1431.	3.7	10
38	Identification of the Phosphorylated Sites of Metabolically 32P-Labeled Osteopontin from Cultured Chicken Osteoblasts. Journal of Biological Chemistry, 1997, 272, 13966-13973.	3.4	51
39	Phosphorylation of Purified Bovine Bone Sialoprotein and Osteopontin by Protein Kinases. Journal of Biological Chemistry, 1996, 271, 16897-16905.	3.4	52
40	Protein kinases of cultured osteoblasts: Selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin. Journal of Bone and Mineral Research, 1996, 11, 1461-1473.	2.8	29
41	Identification of the In Vivo Phosphorylated Sites of Secreted Osteopontin from Cultured Chicken Osteoblasts. Annals of the New York Academy of Sciences, 1995, 760, 357-360.	3.8	7
42	Active-site peptides of acetylcholinesterase of Electrophorus electricus: labelling of His-440 by 1-bromo-[2-14C]pinacolone and Ser-200 by tritiated diisopropyl fluorophosphate. BBA - Proteins and Proteomics, 1994, 1208, 324-331.	2.1	12
43	Two-hydronic-reactive states of acetylcholinesterase, mechanistically relevant acid-base catalyst of pKa 6.5 and a modulatory group of pKa 5.5. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 183-194.	2.4	4
44	General occurrence of binding to acetylcholinesterase-substrate complex in noncompetitive inhibition and in inhibition by substrate. BBA - Proteins and Proteomics, 1991, 1076, 112-122.	2.1	35
45	Reactions of 1-bromo-2-[14C]pinacolone with acetylcholinesterase from Torpedo nobiliana. Effects of 5-trimethylammonio-2-pentanone and diisopropyl fluorophosphate. BBA - Proteins and Proteomics, 1989, 997, 167-175.	2.1	18