Krzysztof J Gorgolewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770784/publications.pdf

Version: 2024-02-01

62 papers 12,822 citations

108046 37 h-index 57 g-index

86 all docs 86 docs citations

86 times ranked 16068 citing authors

#	Article	IF	CITATIONS
1	PET-BIDS, an extension to the brain imaging data structure for positron emission tomography. Scientific Data, 2022, 9, 65.	2.4	20
2	Sharing voxelwise neuroimaging results from rhesus monkeys and other species with Neurovault. Neurolmage, 2021, 225, 117518.	2.1	6
3	The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data. Human Brain Mapping, 2021, 42, 1945-1951.	1.9	27
4	The OpenNeuro resource for sharing of neuroscience data. ELife, 2021, 10, .	2.8	137
5	Fine-grain atlases of functional modes for fMRI analysis. Neurolmage, 2020, 221, 117126.	2.1	64
6	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	13.7	634
7	Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature Protocols, 2020, 15, 2186-2202.	5. 5	78
8	iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 2019, 6, 102.	2.4	96
9	A functional connectome phenotyping dataset including cognitive state and personality measures. Scientific Data, 2019, 6, 180307.	2.4	50
10	A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Scientific Data, 2019, 6, 180308.	2.4	188
11	Crowdsourced MRI quality metrics and expert quality annotations for training of humans and machines. Scientific Data, 2019, 6, 30.	2.4	43
12	Switching Software in Science: Motivations, Challenges, and Solutions. Trends in Cognitive Sciences, 2019, 23, 265-267.	4.0	6
13	EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 2019, 6, 103.	2.4	209
14	Computational and Informatic Advances for Reproducible Data Analysis in Neuroimaging. Annual Review of Biomedical Data Science, 2019, 2, 119-138.	2.8	35
15	fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods, 2019, 16, 111-116.	9.0	1,830
16	PyBIDS: Python tools for BIDS datasets. Journal of Open Source Software, 2019, 4, 1294.	2.0	32
17	Improving Out-of-Sample Prediction of Quality of MRIQC. Lecture Notes in Computer Science, 2018 , , $190\text{-}199$.	1.0	O
18	Boutiques: a flexible framework to integrate command-line applications in computing platforms. GigaScience, 2018, 7, .	3.3	35

#	Article	IF	CITATIONS
19	Reward Learning over Weeks Versus Minutes Increases the Neural Representation of Value in the Human Brain. Journal of Neuroscience, 2018, 38, 7649-7666.	1.7	48
20	MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 2018, 5, 180110.	2.4	101
21	Making replication prestigious. Behavioral and Brain Sciences, 2018, 41, e131.	0.4	15
22	OpenfMRI: Open sharing of task fMRI data. NeuroImage, 2017, 144, 259-261.	2.1	121
23	Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 2017, 18, 115-126.	4.9	1,041
24	Science in the cloud (SIC): A use case in MRI connectomics. GigaScience, 2017, 6, 1-10.	3.3	22
25	A Coordinate-Based Meta-Analysis of Overlaps in Regional Specialization and Functional Connectivity across Subjective Value and Default Mode Networks. Frontiers in Neuroscience, 2017, 11, 1.	1.4	310
26	MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE, 2017, 12, e0184661.	1.1	538
27	Preprocessed Consortium for Neuropsychiatric Phenomics dataset. F1000Research, 2017, 6, 1262.	0.8	28
28	Preprocessed Consortium for Neuropsychiatric Phenomics dataset. F1000Research, 2017, 6, 1262.	0.8	48
29	BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology, 2017, 13, e1005209.	1.5	218
30	Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Computational Biology, 2017, 13, e1005649.	1.5	124
31	Integrating the Brain Imaging Data Structure (BIDS) standard into C-PAC. GigaScience, 2016, 5, .	3.3	1
32	A Practical Guide for Improving Transparency and Reproducibility in Neuroimaging Research. PLoS Biology, 2016, 14, e1002506.	2.6	127
33	Sharing brain mapping statistical results with the neuroimaging data model. Scientific Data, 2016, 3, 160102.	2.4	53
34	The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance. Neuron, 2016, 92, 544-554.	3.8	656
35	The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 2016, 3, 160044.	2.4	1,038
36	A structural and functional magnetic resonance imaging dataset of brain tumour patients. Scientific Data, 2016, 3, 160003.	2.4	18

#	Article	IF	Citations
37	Evaluation of a pre-surgical functional MRI workflow: From data acquisition to reporting. International Journal of Medical Informatics, 2016, 86, 37-42.	1.6	9
38	NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. NeuroImage, 2016, 124, 1242-1244.	2.1	70
39	A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Scientific Data, 2015, 2, 140054.	2.4	40
40	NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in Neuroinformatics, 2015, 9, 8.	1.3	482
41	Effects of thresholding on correlation-based image similarity metrics. Frontiers in Neuroscience, 2015, 9, 418.	1.4	3
42	Long-term neural and physiological phenotyping of a single human. Nature Communications, 2015, 6, 8885.	5.8	353
43	The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices. Neurolmage, 2015, 119, 164-174.	2.1	190
44	Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. Neurolmage, 2015, 122, 399-407.	2.1	160
45	Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI. Frontiers in Human Neuroscience, 2014, 8, 195.	1.0	67
46	Test–retest reliability of structural brain networks from diffusion MRI. NeuroImage, 2014, 86, 231-243.	2.1	132
47	Making big data open: data sharing in neuroimaging. Nature Neuroscience, 2014, 17, 1510-1517.	7.1	358
48	An open science resource for establishing reliability and reproducibility in functional connectomics. Scientific Data, 2014, 1, 140049.	2.4	349
49	A Correspondence between Individual Differences in the Brain's Intrinsic Functional Architecture and the Content and Form of Self-Generated Thoughts. PLoS ONE, 2014, 9, e97176.	1.1	134
50	A test-retest fMRI dataset for motor, language and spatial attention functions. GigaScience, 2013, 2, 6.	3.3	37
51	Single subject fMRI test–retest reliability metrics and confounding factors. Neurolmage, 2013, 69, 231-243.	2.1	99
52	Visualizing the human connectome. NeuroImage, 2013, 80, 445-461.	2.1	95
53	Medial and Lateral Networks in Anterior Prefrontal Cortex Support Metacognitive Ability for Memory and Perception. Journal of Neuroscience, 2013, 33, 16657-16665.	1.7	251
54	Fifty Shades of Gray, Matter: Using Bayesian Priors to Improve the Power of Whole-Brain Voxel- and Connexelwise Inferences. , 2013, , .		1

#	Article	IF	CITATIONS
55	The default modes of reading: modulation of posterior cingulate and medial prefrontal cortex connectivity associated with comprehension and task focus while reading. Frontiers in Human Neuroscience, 2013, 7, 734.	1.0	54
56	Making Data Sharing Count: A Publication-Based Solution. Frontiers in Neuroscience, 2013, 7, 9.	1.4	81
57	Data sharing in neuroimaging research. Frontiers in Neuroinformatics, 2012, 6, 9.	1.3	219
58	Adaptive thresholding for reliable topological inference in single subject fMRI analysis. Frontiers in Human Neuroscience, 2012, 6, 245.	1.0	42
59	Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. Frontiers in Neuroinformatics, 2011, 5, 13.	1.3	1,383
60	Standardizing Metadata in Brain Imaging. Frontiers in Neuroscience, 0, 9, .	1.4	1
61	Developing and using the data models for neuroimaging: the NIDASH Working Group. Frontiers in Neuroinformatics, $0,8,.$	1.3	O
62	Extending NI-DM to share the results and provenance of a neuroimaging study: implementation within SPM and FSL Frontiers in Neuroinformatics, 0, 8, .	1.3	0