
Carl-Henrik NordstrĶm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased cerebrovascular mortality in patients with hypopituitarism. Clinical Endocrinology, 1997, 46, 75-81.	1.2	495
2	Intracerebral Microdialysis in Clinical Practice: Baseline Values for Chemical Markers during Wakefulness, Anesthesia, and Neurosurgery. Neurosurgery, 2000, 47, 701-710.	0.6	305
3	Consensus Meeting on Microdialysis in Neurointensive Care. Intensive Care Medicine, 2004, 30, 2166-2169.	3.9	259
4	Intracerebral Microdialysis in Clinical Practice: Baseline Values for Chemical Markers during Wakefulness, Anesthesia, and Neurosurgery. Neurosurgery, 2000, 47, 701-710.	0.6	250
5	Assessment of the Lower Limit for Cerebral Perfusion Pressure in Severe Head Injuries by Bedside Monitoring of Regional Energy Metabolism. Anesthesiology, 2003, 98, 809-814.	1.3	249
6	Intracerebral microdialysis in severe brain trauma: the importance of catheter location. Journal of Neurosurgery, 2005, 102, 460-469.	0.9	121
7	Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Medicine, 2001, 27, 1215-1223.	3.9	109
8	Blood-brain barrier transport of morphine in patients with severe brain trauma. British Journal of Clinical Pharmacology, 2004, 57, 427-435.	1.1	95
9	Complications due to Prolonged Ventricular fluid Pressure Recording. British Journal of Neurosurgery, 1988, 2, 485-495.	0.4	78
10	Psychosocial outcome 5–8 years after severe traumatic brain lesions and the impact of rehabilitation services. Brain Injury, 1994, 8, 49-64.	0.6	74
11	Restitution of Cerebral Energy State after Complete and Incomplete Ischemia of 30 min Duration. Acta Physiologica Scandinavica, 1976, 97, 270-272.	2.3	65
12	Physiological and Biochemical Principles Underlying Volume-Targeted Therapy The "Lund Concept". Neurocritical Care, 2005, 2, 083-096.	1.2	53
13	Rate of Energy Utilization in the Cerebral Cortex of Rats. Acta Physiologica Scandinavica, 1975, 93, 569-571.	2.3	49
14	Assessment of critical thresholds for cerebral perfusion pressure by performing bedside monitoring of cerebral energy metabolism. Neurosurgical Focus, 2003, 15, 1-8.	1.0	49
15	Cerebral energy metabolism and microdialysis in neurocritical care. Child's Nervous System, 2010, 26, 465-472.	0.6	47
16	Postischemic Cerebral Blood Flow and Oxygen Utilization Rate in Rats Anesthetized with Nitrous Oxide or Phenobarbital. Acta Physiologica Scandinavica, 1977, 101, 230-240.	2.3	46
17	Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiologica Scandinavica, 1978, 104, 271-280.	2.3	36
18	Are Primary Supratentorial Intracerebral Hemorrhages Surrounded by a Biochemical Penumbra? A Microdialysis Study. Neurosurgery, 2006, 59, 521-528.	0.6	34

#	Article	IF	CITATIONS
19	Severe traumatic brain lesions in Sweden. Part I: Aspects of management in non-neurosurgical clinics. Brain Injury, 1989, 3, 247-265.	0.6	33
20	Biochemical indications of cerebral ischaemia and mitochondrial dysfunction in severe brain trauma analysed with regard to type of lesion. Acta Neurochirurgica, 2016, 158, 1231-1240.	0.9	32
21	A Method for Monitoring Intracerebral Temperature in Neurosurgical Patients. Neurosurgery, 1990, 27, 654-657.	0.6	31
22	Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Frontiers in Neurology, 2017, 8, 274.	1.1	30
23	Severe traumatic brain lesions in Sweden. Part 2: Impact of aggressive neurosurgical intensive care. Brain Injury, 1989, 3, 267-281.	0.6	28
24	Economic aspects of capacity for work after severe traumatic brain lesions. Brain Injury, 1994, 8, 37-47.	0.6	26
25	Influence of Phenobarbital Anesthesia on Carbohydrate and Amino Acid Metabolism in Rat Brain. Anesthesiology, 1978, 48, 175-182.	1.3	25
26	Copenhagen Head Injury Ciclosporin Study: A Phase IIa Safety, Pharmacokinetics, and Biomarker Study of Ciclosporin in Severe Traumatic Brain Injury Patients. Journal of Neurotrauma, 2019, 36, 3253-3263.	1.7	25
27	Prostacyclin Infusion May Prevent Secondary Damage in Pericontusional Brain Tissue. Neurocritical Care, 2011, 14, 441-446.	1.2	18
28	Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1844-1864.	2.4	18
29	Use of intracranial pressure monitoring in bacterial meningitis: a 10-year follow up on outcome and intracranial pressure versus head CT scans. Infectious Diseases, 2017, 49, 356-364.	1.4	18
30	Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis. Neurocritical Care, 2015, 22, 221-228.	1.2	16
31	A technique for continuous bedside monitoring of global cerebral energy state. Intensive Care Medicine Experimental, 2016, 4, 3.	0.9	13
32	Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma. Neurocritical Care, 2011, 15, 585-592.	1.2	12
33	Cyclosporin A ameliorates cerebral oxidative metabolism and infarct size in the endothelin-1 rat model of transient cerebral ischaemia. Scientific Reports, 2019, 9, 3702.	1.6	12
34	Severe traumatic brain lesions in Sweden. Part 3: Economic aspects of aggressive neurosurgical intensive care. Brain Injury, 1989, 3, 283-293.	0.6	9
35	Techniques and strategies in neurocritical care originating from Southern Scandinavia. Journal of Rehabilitation Medicine, 2013, 45, 710-717.	0.8	9
36	Exogenous lactate supplementation to the injured brain: misleading conclusions with clinical implications. Intensive Care Medicine, 2014, 40, 919-919.	3.9	8

#	Article	IF	CITATIONS
37	Cerebral microdialysis in TBl—limitations and possibilities. Acta Neurochirurgica, 2017, 159, 2275-2277.	0.9	8
38	Moderately prolonged permissive hypotension results in reversible metabolic perturbation evaluated by intracerebral microdialysis - an experimental animal study. Intensive Care Medicine Experimental, 2019, 7, 67.	0.9	6
39	Patterns of cerebral tissue oxygen tension and cytoplasmic redox state in bacterial meningitis. Acta Anaesthesiologica Scandinavica, 2019, 63, 329-336.	0.7	6
40	Lactate Uptake Against a Concentration Gradient: Misinterpretation of Analytical Imprecision. Journal of Neurotrauma, 2014, 31, 1528-1528.	1.7	5
41	A Prospective Observational Feasibility Study of Jugular Bulb Microdialysis in Subarachnoid Hemorrhage. Neurocritical Care, 2020, 33, 241-255.	1.2	5
42	Insulin, intracerebral glucose and bedside biochemical monitoring utilizing microdialysis. Critical Care, 2008, 12, 124.	2.5	4
43	Critical Thresholds for Cerebrovascular Reactivity: Fact or Fiction?. Neurocritical Care, 2012, 17, 150-151.	1.2	4
44	In Vivo Microdialysis of Endogenous and 13C-labeled TCA Metabolites in Rat Brain: Reversible and Persistent Effects of Mitochondrial Inhibition and Transient Cerebral Ischemia. Metabolites, 2019, 9, 204.	1.3	4
45	Ethyl Pyruvate Increases Post-Ischemic Levels of Mitochondrial Energy Metabolites: A 13C-Labeled Cerebral Microdialysis Study. Metabolites, 2020, 10, 287.	1.3	3
46	Cerebral microdialysis after cardiac arrest – Misinterpretations based on a misconception. Resuscitation, 2021, , .	1.3	3
47	Univariate comparison of PRx, PAx, and RAC—much ado about what?. Acta Neurochirurgica, 2019, 161, 1215-1216.	0.9	2
48	Rehabilitation of long-term sick-listed patients in Sweden through techniques of sports medicine. Journal of Back and Musculoskeletal Rehabilitation, 2000, 15, 67-76.	0.4	1
49	Comment on "Changes in cerebral interstitial glycerol concentration in head injured patients; correlation with secondary eventsâ€. Intensive Care Medicine, 2004, 30, 336-336.	3.9	1
50	Effects of norepinephrine infusion on cerebral energy metabolism during experimental haemorrhagic shock. Intensive Care Medicine Experimental, 2022, 10, 4.	0.9	1
51	Comments on "cognitive impairment in rats after longâ€term exposure to GSMâ€900 mobile phone radiation―by Nittby et al. (Bioelectromagnetics 29:219–232, 2008). Bioelectromagnetics, 2009, 30, 508-508.	0.9	0
52	Monitoring Microdialysis. , 2012, , 173-175.		0
53	Cerebral venous blood is not drained via the internal jugular vein in the pig. Resuscitation, 2021, 162, 437-438.	1.3	0