
Devrim Kilinc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770658/publications.pdf Version: 2024-02-01

DEVDIM KILING

#	Article	IF	CITATIONS
1	Alzheimer's genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Molecular Psychiatry, 2021, 26, 5592-5607.	4.1	28
2	Subcellular Compartmentalization for Neurobiology: Focusing on the Axon. , 2021, , 1-35.		1
3	Highâ€Content Screening for Proteinâ€Protein Interaction Modulators Using Proximity Ligation Assay in Primary Neurons. Current Protocols in Cell Biology, 2020, 86, e100.	2.3	4
4	Pyk2 overexpression in postsynaptic neurons blocks amyloid β1–42-induced synaptotoxicity in microfluidic co-cultures. Brain Communications, 2020, 2, fcaa139.	1.5	13
5	BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. Acta Neuropathologica, 2019, 138, 631-652.	3.9	44
6	Neurochemistry: Rapid Growth Cone Uptake and Dynein-Mediated Axonal Retrograde Transport of Negatively Charged Nanoparticles in Neurons Is Dependent on Size and Cell Type (Small 2/2019). Small, 2019, 15, 1970012.	5.2	0
7	The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis?. Acta Neuropathologica, 2019, 138, 221-236.	3.9	122
8	Rapid Growth Cone Uptake and Dyneinâ€Mediated Axonal Retrograde Transport of Negatively Charged Nanoparticles in Neurons Is Dependent on Size and Cell Type. Small, 2019, 15, e1803758.	5.2	17
9	The Emerging Role of Mechanics in Synapse Formation and Plasticity. Frontiers in Cellular Neuroscience, 2018, 12, 483.	1.8	49
10	Charge and topography patterned lithium niobate provides physical cues to fluidically isolated cortical axons. Applied Physics Letters, 2017, 110, .	1.5	19
11	Bioâ€Nanoâ€Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. Advanced Materials, 2016, 28, 5672-5680.	11.1	53
12	A microfluidic dual gradient generator for conducting cell-based drug combination assays. Integrative Biology (United Kingdom), 2016, 8, 39-49.	0.6	25
13	Neuronal Cell Bodies Remotely Regulate Axonal Growth Response to Localized Netrin-1 Treatment via Second Messenger and DCC Dynamics. Frontiers in Cellular Neuroscience, 2016, 10, 298.	1.8	15
14	Microtechnologies for studying the role of mechanics in axon growth and guidance. Frontiers in Cellular Neuroscience, 2015, 9, 282.	1.8	25
15	Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells. Lab on A Chip, 2015, 15, 3370-3379.	3.1	13
16	Neuron Subpopulations with Different Elongation Rates and DCC Dynamics Exhibit Distinct Responses to Isolated Netrin-1 Treatment. ACS Chemical Neuroscience, 2015, 6, 1578-1590.	1.7	16
17	Mechanochemical Stimulation of MCF7 Cells with Rodâ€Shaped Fe–Au Janus Particles Induces Cell Death Through Paradoxical Hyperactivation of ERK. Advanced Healthcare Materials, 2015, 4, 395-404.	3.9	26
18	Advances in magnetic tweezers for single molecule and cell biophysics. Integrative Biology (United) Tj ETQq0 0	0 rgBT /0\	verlogk 10 Tf 5

Devrim Kilinc

#	Article	IF	CITATIONS
19	In vitro study of the interaction of heregulin-functionalized magnetic–optical nanorods with MCF7 and MDA-MB-231 cells. Faraday Discussions, 2014, 175, 189-201.	1.6	1
20	Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways. Scientific Reports, 2014, 4, 7128.	1.6	42
21	Characterization of Intermolecular and Intramolecular Interactions with the Atomic Force Microscope. , 2014, , 445-456.		Ο
22	NAD ⁺ acts on mitochondrial SirT3 to prevent axonal caspase activation and axonal degeneration. FASEB Journal, 2013, 27, 4712-4722.	0.2	42
23	Analysis of Cellâ€Cell Contact Mediated by Ig Superfamily Cell Adhesion Molecules. Current Protocols in Cell Biology, 2013, 61, 9.5.1-9.5.85.	2.3	4
24	Flow enhanced non-linear magnetophoretic separation of beads based on magnetic susceptibility. Lab on A Chip, 2013, 13, 4400.	3.1	21
25	Synthesis of Superparamagnetic Particles with Tunable Morphologies: The Role of Nanoparticle–Nanoparticle Interactions. Langmuir, 2013, 29, 2546-2553.	1.6	21
26	Magnetic Tweezers-Based Force Clamp Reveals Mechanically Distinct apCAM Domain Interactions. Biophysical Journal, 2012, 103, 1120-1129.	0.2	13
27	Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip. Neurotoxicity Research, 2011, 19, 149-161.	1.3	66
28	Mechanical membrane injury induces axonal beading through localized activation of calpain. Experimental Neurology, 2009, 219, 553-561.	2.0	93
29	Interactive image analysis programs for quantifying injury-induced axonal beading and microtubule disruption. Computer Methods and Programs in Biomedicine, 2009, 95, 62-71.	2.6	12
30	Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Experimental Neurology, 2008, 212, 422-430.	2.0	126
31	Towards a Method for Printing a Network of Chick Forebrain Neurons for Biosensor Applications. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4092-5.	0.5	3
32	Poloxamer 188 Reduces Axonal Beading Following Mechanical Trauma to Cultured Neurons. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5395-8.	0.5	21
33	Parallel Force Measurement in Cell Arrays. , 2007, , .		1