JoaquÃ-n C GarcÃ-a-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770608/publications.pdf

Version: 2024-02-01

279487 197535 2,469 65 23 49 citations h-index g-index papers 69 69 69 3027 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol. Journal of the American Chemical Society, 2006, 128, 4510-4511.	6.6	350
2	Dendrimer-Encapsulated Pd Nanoparticles as Aqueous, Room-Temperature Catalysts for the Stille Reaction. Journal of the American Chemical Society, 2005, 127, 5097-5103.	6.6	254
3	Synthesis, Characterization, and Structure-Selective Extraction of 1a^3-nm Diameter AuAg Dendrimer-Encapsulated Bimetallic Nanoparticles. Journal of the American Chemical Society, 2005, 127, 1015-1024.	6.6	231
4	Extraction of Au Nanoparticles Having Narrow Size Distributions from within Dendrimer Templates. Journal of the American Chemical Society, 2004, 126, 16170-16178.	6.6	128
5	Synthesis, Characterization, and Optical Response of Dipolar and Non-Dipolar Poly(phenylenevinylene) Dendrimers. Journal of Organic Chemistry, 2001, 66, 5664-5670.	1.7	112
6	Extraction of Monodisperse Palladium Nanoparticles from Dendrimer Templates. Journal of the American Chemical Society, 2003, 125, 11190-11191.	6.6	99
7	Synthesis, Characterization, and Magnetic Properties of Dendrimer-Encapsulated Nickel Nanoparticles Containing <150 Atoms. Chemistry of Materials, 2006, 18, 5039-5044.	3.2	90
8	Neutral and Cationic Aluminum Complexes Supported by Acetamidate and Thioacetamidate Heteroscorpionate Ligands as Initiators for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2011, 30, 1507-1522.	1,1	77
9	Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of Îμ-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules, 2013, 46, 6388-6394.	2.2	75
10	4-Arylvinyl-2,6-di(pyridin-2-yl)pyrimidines: Synthesis and Optical Properties. Journal of Organic Chemistry, 2011, 76, 3837-3845.	1.7	74
11	Hydrophobic Dendrimers as Templates for Au Nanoparticles. Langmuir, 2005, 21, 11981-11986.	1.6	62
12	Synthesis, electrochemistry and photophysical properties of phenylenevinylene fullerodendrimers. Tetrahedron Letters, 2001, 42, 3435-3438.	0.7	56
13	Highly Emissive Supramolecular Oligo(p-phenylene vinylene) Dendrimers. Journal of the American Chemical Society, 2003, 125, 12953-12960.	6.6	55
14	Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohydrate Polymers, 2022, 277, 118815.	5.1	51
15	Separation of Dendrimer-Encapsulated Au and Ag Nanoparticles by Selective Extraction. Chemistry of Materials, 2004, 16, 4202-4204.	3.2	50
16	Synthesis, structural characterization and catalytic evaluation of the ring-opening polymerization of discrete five-coordinate alkyl aluminium complexes. Dalton Transactions, 2013, 42, 9325.	1.6	50
17	Electrochemical Properties of Monolayer-Protected Au and Pd Nanoparticles Extracted from within Dendrimer Templates. Langmuir, 2005, 21, 5485-5491.	1.6	47
18	Efficient, Non-Toxic Hybrid PPV-PAMAM Dendrimer as a Gene Carrier for Neuronal Cells. Biomacromolecules, 2011, 12, 1205-1213.	2.6	47

#	Article	IF	CITATIONS
19	Metal cation complexation studies of 4-arylvinyl-2,6-di(pyridin-2-yl)pyrimidines: Effect on the optical properties. Dyes and Pigments, 2013, 97, 230-237.	2.0	42
20	Conjugated Dendrimers with oly(Phenylenevinylene) and Poly(Phenyleneethynylene) Scaffolds. Current Organic Synthesis, 2008, 5, 267-290.	0.7	39
21	Aggregation-Induced Emission Properties in Fully π-Conjugated Polymers, Dendrimers, and Oligomers. Polymers, 2021, 13, 213.	2.0	36
22	Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 2006, 12, 5149-5157.	1.7	33
23	A Horner-Wadsworth-Emmons approach to dipolar and non-dipolar poly(phenylenevinylene)dendrimers. Tetrahedron Letters, 1999, 40, 8181-8184.	0.7	27
24	Synthesis and Photoluminescent Properties of 1,1 -Binaphthyl-Based Chiral Phenylenevinylene Dendrimers. Journal of Organic Chemistry, 2003, 68, 3178-3183.	1.7	23
25	Synthesis of Novel Cross-Conjugated Dendritic Fluorophores Containing Both Phenylenevinylene and Phenyleneethynylene Moieties. Journal of Organic Chemistry, 2003, 68, 832-838.	1.7	21
26	PPV–PAMAM Hybrid Dendrimers: Self-Assembly and Stabilization of Gold Nanoparticles. Macromolecules, 2013, 46, 7316-7324.	2.2	21
27	Effect of the Aggregation on the Photophysical Properties of a Blue-Emitting Star-Shaped Molecule Based on 1,3,5-Tristyrylbenzene. Journal of Physical Chemistry C, 2017, 121, 4720-4733.	1.5	21
28	Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of Biological Macromolecules, 2022, 206, 288-297.	3.6	21
29	Synthesis of New 1,1â€~-Binaphthyl-Based Chiral Phenylenevinylene Dendrimers. Organic Letters, 2000, 2, 3651-3653.	2.4	20
30	pH-Sensitive Fluorescence Lifetime Molecular Probes Based on Functionalized Tristyrylbenzene. Journal of Physical Chemistry C, 2016, 120, 18771-18779.	1.5	17
31	Photophysical features and semiconducting properties of propeller-shaped oligo(styryl)benzenes. Journal of Chemical Physics, 2019, 150, 064309.	1.2	16
32	Clickâ€ligation of coumarin to polyether polyols for polyurethane foams. Polymer International, 2013, 62, 783-790.	1.6	15
33	Understanding the Driving Mechanisms of Enhanced Luminescence Emission of Oligo(styryl)benzenes and Tri(styryl)â€∢i>sàê€riazine. Chemistry - A European Journal, 2020, 26, 3373-3384.	1.7	15
34	Polyamido amine dendrimers functionalized with poly(phenylenevinylene) dendrons at their periphery. Journal of Polymer Science Part A, 2009, 47, 6409-6419.	2.5	14
35	Molecular Structure of a Hydridoniobocene Complex [Nb(η ⁵ â€C ₅ H ₄ SiMe ₃) ₂ (H) ₃] and Its Use as Catalyst for the Ringâ€Opening Polymerization of Cyclic Esters. European Journal of Inorganic Chemistry. 2012. 2012. 1139-1144.	1.0	14
36	Novel Methods for the Synthesis of Magnetic Nanoparticles. Frontiers of Nanoscience, 2014, 6, 85-128.	0.3	13

#	Article	IF	CITATIONS
37	Enhancement of emission by surfactant-induced aggregation in poly(phenylenevinylene)-based lipochromophores. Dyes and Pigments, 2020, 179, 108410.	2.0	12
38	On the synthesis of heterocyclic dendrons. Arkivoc, 2005, 2002, 17-25.	0.3	11
39	Pluronic F-68 nanodots incorporating pyrimidine chromophores. Colloid and Polymer Science, 2012, 290, 1353-1359.	1.0	9
40	Thymoquinone-Loaded Chitosan Nanoparticles as Natural Preservative Agent in Cosmetic Products. International Journal of Molecular Sciences, 2022, 23, 898.	1.8	9
41	Structureâ€Activity Relationships for Poly(phenylene)vinylene Derivatives as Antibacterial Agents. ChemistrySelect, 2018, 3, 7327-7332.	0.7	8
42	Styrylbenzene organogels and how the cyano groups tune the aggregation-induced emission. Dyes and Pigments, 2021, 192, 109427.	2.0	8
43	Production of Polyether Polyols Using Phosphate Calcium Salt. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 569-576.	1.2	7
44	Combined Theoretical and Experimental Study on Intramolecular Charge Transfer Processes in Star-Shaped Conjugated Molecules. Journal of Physical Chemistry C, 2019, 123, 11179-11188.	1.5	7
45	Novel antifungal activity of oligostyrylbenzenes compounds on <i>Candida tropicalis</i> biofilms. Medical Mycology, 2021, 59, 244-252.	0.3	7
46	Tuning of type-I and type-II mechanisms for visible light degradation in tris(styryl)benzene-sensitized TiO2 nanoparticles. Dyes and Pigments, 2021, 184, 108802.	2.0	7
47	pH-Controlled Self-Assembly of X-Shaped Conjugated Molecules: The Case of 1,2,4,5-Tetrastyrylbenzene. Journal of Physical Chemistry C, 2018, 122, 19937-19945.	1.5	6
48	A study of silylated tris(styryl)benzenes as potential fluorescent sensors for aqueous fluoride. Dyes and Pigments, 2020, 182, 108610.	2.0	6
49	A MALDIâ€₹OF MS study of lanthanide(III)â€cored poly(phenylenevinylene) dendrimers. Journal of Mass Spectrometry, 2009, 44, 613-620.	0.7	5
50	Layer-Block Dendrimers with Alternating Thienylenevinylene and Phenylenevinylene Units. Journal of Organic Chemistry, 2012, 77, 6223-6230.	1.7	5
51	Shedding Light on the Origin of Solidâ€State Luminescence Enhancement in Butterfly Molecules. Chemistry - A European Journal, 2020, 26, 13990-14001.	1.7	5
52	Reversal of a Fluorescent Fluoride Chemosensor from Turn-Off to Turn-On Based on Aggregation Induced Emission Properties. ACS Sensors, 2022, 7, 37-43.	4.0	5
53	Intramolecular charge transfer and molecular flexibility: Key parameters to be considered in the design of highly fluorescent p-phenylene vinylene derivatives. Dyes and Pigments, 2022, 199, 110105.	2.0	5
54	Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chemical Communications, 0 , , .	2.2	5

#	Article	IF	CITATIONS
55	Extraction of Metal Nanoparticles from within Dendrimer Templates. ACS Symposium Series, 2006, , 215-229.	0.5	4
56	Synthesis of Polyether Polyols using Glycerol Phosphate Disodium Salt as Initiator. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 905-913.	1.2	4
57	Sulfonated dendrimer―and hyperbranched polyglycerolâ€ <scp>PBIOO</scp> [®] blend membranes for fuel cells. Journal of Polymer Science Part A, 2016, 54, 69-80.	2.5	3
58	Inkjet printing of poly(phenylenevinylene)-based fluorophores using an environmentally friendly approach. Progress in Organic Coatings, 2022, 166, 106787.	1.9	3
59	Synthesis of 4-Dendronized β-Lactams. Synlett, 2003, 2003, 1587-1590.	1.0	2
60	Conjugated Dendrimers with Poly(Phenylenevinylene) and Poly(Phenyleneethynylene) Scaffolds. , 2013, , 185-234.		2
61	AIE-dots of amphiphilic oligostyrylbenzenes: Encapsulation and release monitored via FRET. Journal of Molecular Liquids, 2022, 362, 119771.	2.3	2
62	DABdendr as a Building Block. Synlett, 2002, 2002, 1365-1367.	1.0	1
63	Study of the aggregation behavior of a π-conjugated dendrimer with a twisted core. Tetrahedron Letters, 2012, 53, 2752-2755.	0.7	1
64	Synergic activity of oligostyrylbenzenes with amphotericin B against Candida tropicalis biofilms. Yeast, 2021, 38, 634-645.	0.8	1
65	Synthesis and Photoluminescent Properties of 1,1′-Binaphthyl-Based Chiral Phenylenevinylene Dendrimers ChemInform, 2003, 34, no.	0.1	O