Shang-Lin Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770361/publications.pdf

Version: 2024-02-01

58 4,163
papers citations

36 53 h-index g-index

58 58 all docs docs citations

58 times ranked 4044 citing authors

#	Article	IF	CITATIONS
1	Microcapsule/silica dual-fillers for self-healing, self-reporting and corrosion protection properties of waterborne epoxy coatings. Progress in Organic Coatings, 2021, 159, 106394.	1.9	10
2	Marangoni interface self-assembly hybrid carbon nano-network for transparent conductive silicone rubber. Progress in Organic Coatings, 2019, 129, 26-31.	1.9	3
3	Strong Anisotropy and Ultralow Percolation Threshold in Multiscale Composites Modified by Carbon Nanotubes Coated Hollow Glass Fiber. Advanced Engineering Materials, 2018, 20, 1800077.	1.6	2
4	Effect of hierarchical structure on electrical properties and percolation behavior of multiscale composites modified by carbon nanotube coating. Composites Science and Technology, 2018, 164, 160-167.	3.8	10
5	Achieving Higher Strength and Sensitivity toward UV Light in Multifunctional Composites by Controlling the Thickness of Nanolayer on the Surface of Glass Fiber. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23399-23405.	4.0	3
6	An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly(vinylidene fluoride)/Carbon Nanotube Composites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5437-5446.	4.0	52
7	Variable structural colouration of composite interphases. Materials Horizons, 2017, 4, 389-395.	6.4	16
8	Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings. Composites Science and Technology, 2017, 151, 282-290.	3.8	123
9	Water Vapor Sensing by Carbon Nanoparticle "Skin― Advanced Materials Interfaces, 2015, 2, 1500244.	1.9	7
10	Multifunctional interphases in polymer composites. , 2015, , 338-362.		3
11	In-situ synchrotron X-ray studies of crystallization of \hat{l}^2 -nucleated iPP subjected to a wide range of shear rates and shear temperatures. Polymer, 2015, 76, 182-190.	1.8	15
12	A Single Glass Fiber with Ultrathin Layer of Carbon Nanotube Networks Beneficial to <i>In-Situ</i> Monitoring of Polymer Properties in Composite Interphases. Soft Materials, 2014, 12, S115-S120.	0.8	22
13	Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Advances, 2014, 4, 16951-16957.	1.7	67
14			
	Cellulose fibres with carbon nanotube networks for water sensing. Journal of Materials Chemistry A, 2014, 2, 5541-5547.	5.2	60
15		3.8	585
15 16	2014, 2, 5541-5547.		
	2014, 2, 5541-5547. Carbon fiber surfaces and composite interphases. Composites Science and Technology, 2014, 102, 35-50. Development of functional glass fibres with nanocomposite coating: A comparative study. Composites	3.8	585

#	Article	IF	Citations
19	Behaviour of Strain-Hardening Cement-Based Composites Under High Strain Rates. Journal of Advanced Concrete Technology, 2011, 9, 51-62.	0.8	111
20	Single MWNTâ€Glass Fiber as Strain Sensor and Switch. Advanced Materials, 2011, 23, 3392-3397.	11.1	120
21	Strain Sensors: Single MWNTâ€Glass Fiber as Strain Sensor and Switch (Adv. Mater. 30/2011). Advanced Materials, 2011, 23, 3348-3348.	11.1	0
22	Multi-functional multi-walled carbon nanotube-jute fibres and composites. Carbon, 2011, 49, 2683-2692.	5.4	52
23	Glass Fibers with Carbon Nanotube Networks as Multifunctional Sensors. Advanced Functional Materials, 2010, 20, 1885-1893.	7.8	173
24	Sensors: Glass Fibers with Carbon Nanotube Networks as Multifunctional Sensors (Adv. Funct. Mater.) Tj ETQq0	0 0 rgBT /	Overlock 10 T
25	Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon, 2010, 48, 2273-2281.	5.4	155
26	Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 2010, 41, 539-548.	3.8	86
27	Photochemical surface modification of PP for abrasion resistance. Applied Surface Science, 2009, 255, 9139-9145.	3.1	17
28	Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: Fibre properties and durability. Composites Science and Technology, 2009, 69, 531-538.	3.8	76
29	Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete II: Water adsorption and composite interphases. Composites Science and Technology, 2009, 69, 905-912.	3.8	52
30	Stitched glass/PP composite. Part I: Tensile and impact properties. Composites Part A: Applied Science and Manufacturing, 2009, 40, 635-643.	3.8	63
31	Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion. Composites Science and Technology, 2008, 68, 2892-2901.	3.8	100
32	Static and dynamic properties of single and multi-fiber/epoxy composites modified by sizings. Composites Science and Technology, 2007, 67, 1105-1115.	3.8	44
33	Controlled interfacial adhesion of Twaron \hat{A}^{\otimes} aramid fibres in composites by the finish formulation. Composites Science and Technology, 2007, 67, 2027-2035.	3.8	46
34	Investigation on adhesion, interphases, and failure behaviour of cyclic butylene terephthalate (CBT®)/glass fiber composites. Composites Science and Technology, 2007, 67, 3140-3150.	3.8	41
35	Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties. Acta Materialia, 2007, 55, 1043-1052.	3.8	93
36	Adhesion of PBO fiber in epoxy composites. Journal of Materials Science, 2007, 42, 8047-8052.	1.7	62

#	Article	IF	Citations
37	Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties. Journal of Materials Science, 2007, 42, 8062-8070.	1.7	13
38	Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 2006, 66, 952-963.	3.8	323
39	New Nano-Scale Characterization Techniques for Interphases. , 2005, , 237-242.		0
40	Photochemical surface modification of PET by excimer UV lamp irradiation. Applied Physics B: Lasers and Optics, 2005, 81, 681-690.	1.1	49
41	Enhancing the Properties of Composites by Controlling Their Interphase Parameters. Advanced Engineering Materials, 2004, 6, 147-150.	1.6	16
42	Coatings for glass fibers in a cementitious matrix. Acta Materialia, 2004, 52, 4745-4755.	3.8	60
43	Carbon fibers and composites with epoxy resins: Topography, fractography and interphases. Carbon, 2004, 42, 515-529.	5.4	142
44	Adhesion of epoxy/glass fibre composites influenced by aging effects on sizings. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1207-1216.	3.8	49
45	Sizings on Alkali-Resistant Glass Fibers: Environmental Effects on Mechanical Properties§. Langmuir, 2003, 19, 2496-2506.	1.6	40
46	Environmental resistance and mechanical performance of alkali-resistant glass fibers with surface sizings. Journal of Non-Crystalline Solids, 2003, 325, 230-241.	1.5	22
47	Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 2002, 33, 559-576.	3.8	293
48	Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites. Journal of Applied Polymer Science, 2002, 84, 1155-1167.	1.3	46
49	Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness. Composites Part A: Applied Science and Manufacturing, 2001, 32, 763-774.	3.8	84
50	Cooling rate influences in carbon fibre/PEEK composites. Part III: impact damage performance. Composites Part A: Applied Science and Manufacturing, 2001, 32, 775-785.	3.8	70
51	Prospect of nanoscale interphase evaluation to predict composite properties. Journal of Adhesion Science and Technology, 2001, 15, 1015-1037.	1.4	10
52	Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Composites Part A: Applied Science and Manufacturing, 2000, 31, 517-530.	3.8	238
53	EFFECT OF COOLING RATE ON INTERPHASE PROPERTIES OF CARBON FIBRE/PEEK COMPOSITES. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 157-162.	0.1	1
54	Scanning acoustic microscopy as a tool for quantitative characterisation of damage in CFRPs. Composites Science and Technology, 1999, 59, 345-354.	3.8	43

#	Article	IF	CITATIONS
55	Surface modification of ultrahigh molecular weight polyethylene fibers by plasma treatment. I. Improving surface adhesion. Journal of Applied Polymer Science, 1993, 47, 2065-2071.	1.3	59
56	Surface modification of ultrahigh molecular weight polyethylene fibers by plasma treatment. II. Mechanism of surface modification. Journal of Applied Polymer Science, 1993, 47, 2093-2101.	1.3	50
57	Effect of low-temperature-plasma surface treatment on the adhesion of ultra-high-molecular-weight-polyethylene fibres. Journal of Materials Science, 1993, 28, 4883-4891.	1.7	20
58	Nano Reinforcements in Surface Coatings and Composite Interphases. , 0, , .		0