Eduard Tokar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/877029/publications.pdf

Version: 2024-02-01

1163117 1199594 34 214 8 12 citations h-index g-index papers 34 34 34 133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sorption of 137Cs and 90Sr by Chemically Modified Humic Acids. Radiochemistry, 2022, 64, 88-95.	0.7	O
2	Effects of Temperature and Sulfuric Acid and Iron (II) Concentrations on the Efficacy of Decontamination of Spent Ion-Exchange Resins Containing Hematite. Processes, 2022, 10, 931.	2.8	2
3	The dissolution of hematite deposits on model spent ion exchange resins using direct current. IOP Conference Series: Materials Science and Engineering, 2021, 1048, 012020.	0.6	1
4	Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions. Sustainability, 2021, 13, 4756.	3.2	1
5	Synthesis of Inorganic Compounds in the Matrix of Polysaccharide Chitosan. Biomimetics, 2021, 6, 45.	3.3	2
6	Synthesis of Ferrocyanide Sorbents in Polysaccharide Matrices. Russian Journal of Inorganic Chemistry, 2021, 66, 1268-1274.	1.3	4
7	Recovery of Uranium by Se-Derivatives of Amidoximes and Composites Based on Them. Materials, 2021, 14, 5511.	2.9	1
8	Study on the adsorption of strontium on granular manganese oxide. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 1005-1017.	1.5	9
9	Effect of the Resorcinol/Formaldehyde Ratio and the Temperature of the Resorcinol–Formaldehyde Gel Solidification on the Chemical Stability and Sorption Characteristics of Ion-Exchange Resins. Gels, 2021, 7, 239.	4.5	5
10	MnO2 fiber as a sorbent for radionuclides in oceanographic investigations. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 539-547.	1.5	9
11	Synthesis and sorption characteristics of tungsten oxides-based materials for Sr-90 removal from water media. Journal of Materials Science, 2020, 55, 9374-9384.	3.7	6
12	Synthesis and Sorption Properties towards Sr-90 of Composite Sorbents Based on Magnetite and Hematite. Materials, 2020, 13, 1189.	2.9	11
13	Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics, 2020, 5, 22.	3.3	6
14	Nanocomplexes of Magnesium Phenylsiloxanes - Moleculer Structere and Properties. Silicon, 2019, 11, 2283-2292.	3.3	2
15	Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media. Radiochimica Acta, 2019, 107, 1145-1153.	1.2	1
16	Synthesis and sorption properties of porous resorcinol–formaldehyde resins prepared by polymerization of the emulsion dispersion phase. Journal of Materials Science, 2019, 54, 14330-14342.	3.7	4
17	Chitosan-based biosorbents: immobilization of metal hexacyanoferrates and application for removal of cesium radionuclide from aqueous solutions. Journal of Sol-Gel Science and Technology, 2019, 92, 459-466.	2.4	7
18	Structure and redox properties of birnessite-type manganese oxides as high-performance layered sorbents for Sr-90 removal. Thermochimica Acta, 2019, 675, 92-99.	2.7	5

#	Article	IF	Citations
19	Porous Resorcinol-Formaldehyde Resins. Colloids and Interfaces, 2019, 3, 7.	2.1	1
20	Sorption of Strontium and Lead by Impregnated Sorbents Based on Di(tert-butylcyclohexano)-18-crown-6 and an Ionic Liquid. Radiochemistry, 2019, 61, 700-706.	0.7	4
21	Studies of Interaction of Polyphenylsiloxane with Vanadyl Bis-Acetylacetonate. Silicon, 2019, 11, 2261-2266.	3.3	5
22	Manganese Oxide-Based Sorbent for Sr-90 Radionuclide Removal from Seawater. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012030.	0.6	1
23	Staircase polymetalsilicon nanocomplexes – Polymetalphenyl siloxanes: Structure and properties. Journal of Molecular Structure, 2018, 1156, 424-432.	3.6	11
24	Morphological Features and Sorption Performance of Materials Based on Birnessite Exposed to Various Reductive Conditions. Colloids and Interfaces, 2018, 2, 70.	2.1	1
25	New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr2+ Radionuclide from Aqueous Solutions. Biomimetics, 2018, 3, 39.	3.3	13
26	Investigation of Sr uptake by birnessite-type sorbents from seawater. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 243-251.	1.5	21
27	Concentrating cesium-137 from seawater using resorcinol-formaldehyde resin for radioecological monitoring. Radiochimica Acta, 2017, 105, 121-127.	1.2	6
28	Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Separation Science and Technology, 2017, 52, 1983-1991.	2.5	14
29	Sorption of 137Cs from seawater onto resorcinol–formaldehyde resin. Radiochemistry, 2017, 59, 160-165.	0.7	5
30	Study of the structure of polyphenylsiloxanes containing the metal-ions by physical–chemical methods. Journal of Molecular Structure, 2017, 1145, 300-308.	3.6	8
31	Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins. Journal of Hazardous Materials, 2017, 321, 326-334.	12.4	23
32	Investigation of Cement Compositions Modification with Organosilicon Compounds. IOP Conference Series: Materials Science and Engineering, 2017, 262, 012015.	0.6	1
33	Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochimica Acta, 2016, 104, 657-661.	1.2	17
34	Composite selective sorbents for sea water decontamination from cesium and strontium radionuclides. Doklady Physical Chemistry, 2015, 460, 10-14.	0.9	7