François Rassendren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7). Science, 1996, 272, 735-738.	6.0	1,641
2	Up-Regulation of P2X ₄ Receptors in Spinal Microglia after Peripheral Nerve Injury Mediates BDNF Release and Neuropathic Pain. Journal of Neuroscience, 2008, 28, 11263-11268.	1.7	476
3	The Permeabilizing ATP Receptor, P2X7. Journal of Biological Chemistry, 1997, 272, 5482-5486.	1.6	458
4	Pore dilation of neuronal P2X receptor channels. Nature Neuroscience, 1999, 2, 315-321.	7.1	377
5	P2X Receptors: An Emerging Channel Family. European Journal of Neuroscience, 1996, 8, 2221-2228.	1.2	253
6	Status Epilepticus Induces a Particular Microglial Activation State Characterized by Enhanced Purinergic Signaling. Journal of Neuroscience, 2008, 28, 9133-9144.	1.7	251
7	ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death and Disease, 2012, 3, e403-e403.	2.7	209
8	Role of Cationic Channel TRPV2 in Promoting Prostate Cancer Migration and Progression to Androgen Resistance. Cancer Research, 2010, 70, 1225-1235.	0.4	200
9	P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO Journal, 2010, 29, 2290-2300.	3.5	189
10	Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO Journal, 1997, 16, 3446-3454.	3.5	187
11	Identification of Amino Acid Residues Contributing to the ATP-binding Site of a Purinergic P2X Receptor. Journal of Biological Chemistry, 2000, 275, 34190-34196.	1.6	182
12	Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 528-539.	1.9	165
13	Altered Hippocampal Synaptic Potentiation in P2X4 Knock-Out Mice. Journal of Neuroscience, 2006, 26, 9006-9009.	1.7	163
14	The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death and Disease, 2015, 6, e1629-e1629.	2.7	162
15	Zinc has opposite effects on NMDA and Non-NMDA receptors expressed in xenopus oocytes. Neuron, 1990, 4, 733-740.	3.8	151
16	P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Molecular Medicine, 2018, 10, .	3.3	141
17	Contribution of Individual Subunits to the Multimeric P2X ₂ Receptor: Estimates based on Methanethiosulfonate Block at T336C. Molecular Pharmacology, 1999, 56, 973-981.	1.0	116
18	N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. American Journal of Physiology - Cell Physiology, 2005, 289, C1295-C1302.	2.1	116

François Rassendren

#	Article	IF	CITATIONS
19	Membrane Topology of an ATP-gated Ion Channel (P2X Receptor). Journal of Biological Chemistry, 1998, 273, 15177-15182.	1.6	108
20	Amino Acid Residues Involved in Gating Identified in the First Membrane-spanning Domain of the Rat P2X2 Receptor. Journal of Biological Chemistry, 2001, 276, 14902-14908.	1.6	108
21	Involvement of P2X4 receptors in hippocampal microglial activation after <i>status epilepticus</i> . Glia, 2013, 61, 1306-1319.	2.5	96
22	Pharmacological Characterization and Molecular Determinants of the Activation of Transient Receptor Potential V2 Channel Orthologs by 2-Aminoethoxydiphenyl Borate. Molecular Pharmacology, 2007, 72, 1258-1268.	1.0	95
23	Identification of a Trafficking Motif Involved in the Stabilization and Polarization of P2X Receptors. Journal of Biological Chemistry, 2004, 279, 29628-29638.	1.6	78
24	Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1999-2004.	3.3	68
25	P2X2 and P2X5 Subunits Define a New Heteromeric Receptor with P2X7-Like Properties. Journal of Neuroscience, 2012, 32, 4284-4296.	1.7	63
26	Optical control of an ion channel gate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20813-20818.	3.3	56
27	A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron, 1994, 13, 1205-1213.	3.8	55
28	Regulation of P2X2 Receptors by the Neuronal Calcium Sensor VILIP1. Science Signaling, 2008, 1, ra8.	1.6	55
29	<scp>T</scp> he microglial reaction signature revealed by <scp>RNA</scp> seq from individual mice. Clia, 2018, 66, 971-986.	2.5	51
30	Sensory neuronal P2RX4 receptors controls BDNF signaling in inflammatory pain. Scientific Reports, 2018, 8, 964.	1.6	51
31	Histidine 140 Plays a Key Role in the Inhibitory Modulation of the P2X4 Nucleotide Receptor by Copper but Not Zinc. Journal of Biological Chemistry, 2003, 278, 36777-36785.	1.6	47
32	A specific quisqualate agonist inhibits kainate responses induced in Xenopus oocytes injected with rat brain RNA. Neuroscience Letters, 1989, 99, 333-339.	1.0	43
33	Purinergic signaling in epilepsy. Journal of Neuroscience Research, 2016, 94, 781-793.	1.3	42
34	ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H21-H28.	1.5	40
35	Characterization of voltageâ€dependent calcium channels expressed in Xenopus oocytes injected with mRNA from rat heart Journal of Physiology, 1990, 429, 95-112.	1.3	38
36	Heavy metals modulate the activity of the purinergic P2X4 receptor. Toxicology and Applied Pharmacology, 2005, 202, 121-131.	1.3	31

François Rassendren

#	Article	IF	CITATIONS
37	Probing the expression and function of the P2X7 purinoceptor with antibodies raised by genetic immunization. Cellular Immunology, 2005, 236, 72-77.	1.4	26
38	Procedures for Culturing and Genetically Manipulating Murine Hippocampal Postnatal Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 19.	1.3	24
39	Levels of mRNA coding for motoneuron growth-promoting factors are increased in denervated muscle Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7194-7198.	3.3	20
40	A P2rx7 Passenger Mutation Affects the Vitality and Function of TÂcells in Congenic Mice. IScience, 2020, 23, 101870.	1.9	16
41	Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice. PLoS ONE, 2016, 11, e0150793.	1.1	16
42	The Appearance of a Protein Kinase A-regulated Splice Isoform of slo Is Associated with the Maturation of Neurons That Control Reproductive Behavior. Journal of Biological Chemistry, 2004, 279, 52324-52330.	1.6	14
43	Influence of bacterial toxins and forskolin upon vasopressin-induced inositol phosphate accumulation in WRK 1 cells. Biochemical Journal, 1989, 260, 665-672.	1.7	12
44	Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in Molecular Biology, 2019, 2034, 41-55.	0.4	12
45	Generation and Characterization of Specific Monoclonal Antibodies and Nanobodies Directed Against the ATP-Gated Channel P2X4. Frontiers in Cellular Neuroscience, 2019, 13, 498.	1.8	11
46	Blocking α2δ-1 Subunit Reduces Bladder Hypersensitivity and Inflammation in a Cystitis Mouse Model by Decreasing NF-kB Pathway Activation. Frontiers in Pharmacology, 2019, 10, 133.	1.6	9
47	Analysis of CX3CR1 haplodeficiency in male and female APPswe/PSEN1dE9 mice along Alzheimer disease progression. Brain, Behavior, and Immunity, 2021, 91, 404-417.	2.0	9
48	P2X-GCaMPs as Versatile Tools for Imaging Extracellular ATP Signaling. ENeuro, 2021, 8, ENEURO.0185-20.2020.	0.9	8
49	Electrophysiological expression of endothelin and angiotensin receptors in Xenopus oocytes injected with rat heart mRNA. FEBS Letters, 1989, 258, 289-292.	1.3	7
50	P2X: The ionotropic receptor for extracellular ATP. Drug Development Research, 1998, 45, 125-129.	1.4	5
51	Intracellular Messengers Associated with Excitatory Amino Acid (EAA) Receptors. Advances in Experimental Medicine and Biology, 1990, 268, 79-91.	0.8	3
52	Glial Mechanisms of Inflammation During Seizures. Agents and Actions Supplements, 2021, , 45-70.	0.2	1
53	Microglia and purinergic P2X receptors in neuropathic pain: an unexpected excitatory duo. Douleur Et Analgesie, 2008, 21, 221-226.	0.2	0
54	P2X Receptors and Pain. , 2014, , 615-633.		0

P2X Receptors and Pain. , 2014, , 615-633. 54

#	Article	IF	CITATIONS
55	Multimeric Purinoceptor Detection by Bioluminescence Resonance Energy Transfer. Methods in Molecular Biology, 2020, 2041, 155-162.	0.4	0
56	Multimeric Ionotropic Purinoceptor Detection by Protein Cross-Linking. Methods in Molecular Biology, 2020, 2041, 147-153.	0.4	0