
Yu-Lan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770048/publications.pdf Version: 2024-02-01

ΥΠ-ΓΑΝΤΙΠ

#	Article	IF	CITATIONS
1	Glycine alleviated diquat-induced hepatic injury via inhibiting ferroptosis in weaned piglets. Animal Bioscience, 2022, 35, 938-947.	0.8	4
2	Holly polyphenols attenuate liver injury, suppression inflammation and oxidative stress in lipopolysaccharide-challenged weaned pigs. Food and Agricultural Immunology, 2022, 33, 35-46.	0.7	2
3	Glutamate attenuates lipopolysaccharide induced intestinal barrier injury by regulating corticotropin-releasing factor pathway in weaned pigs. Animal Bioscience, 2022, 35, 1235-1249.	0.8	3
4	Lysine-Specific Demethylase 1 in Energy Metabolism: A Novel Target for Obesity. Journal of Nutrition, 2022, 152, 1611-1620.	1.3	4
5	Developmental changes of free amino acids in amniotic, allantoic fluids and yolk of broiler embryo. British Poultry Science, 2022, 63, 857-863.	0.8	3
6	Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death and Disease, 2021, 12, 62.	2.7	43
7	Metabolic Regulation of Intestinal Stem Cell Homeostasis. Trends in Cell Biology, 2021, 31, 325-327.	3.6	11
8	Xylooligosaccharide attenuates lipopolysaccharide-induced intestinal injury in piglets via suppressing inflammation and modulating cecal microbial communities. Animal Nutrition, 2021, 7, 609-620.	2.1	28
9	EPA and DHA attenuate deoxynivalenolâ€induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway. FASEB Journal, 2020, 34, 2483-2496.	0.2	41
10	Activation of the NF- <i>κ</i> B and MAPK Signaling Pathways Contributes to the Inflammatory Responses, but Not Cell Injury, in IPEC-1 Cells Challenged with Hydrogen Peroxide. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	34
11	Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food and Function, 2019, 10, 479-489.	2.1	64
12	EPA and DHA Inhibit Myogenesis and Downregulate the Expression of Muscle-related Genes in C2C12 Myoblasts. Genes, 2019, 10, 64.	1.0	20
13	Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model. Molecular Nutrition and Food Research, 2018, 62, e1700814.	1.5	61
14	Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics. Animal Nutrition, 2018, 4, 160-169.	2.1	41
15	Medium-Chain Triglycerides Attenuate Liver Injury in Lipopolysaccharide-Challenged Pigs by Inhibiting Necroptotic and Inflammatory Signaling Pathways. International Journal of Molecular Sciences, 2018, 19, 3697.	1.8	22
16	Glutamate alleviates intestinal injury, maintains mTOR and suppresses TLR4 and NOD signaling pathways in weanling pigs challenged with lipopolysaccharide. Scientific Reports, 2018, 8, 15124.	1.6	29
17	Glycine Relieves Intestinal Injury by Maintaining mTOR Signaling and Suppressing AMPK, TLR4, and NOD Signaling in Weaned Piglets after Lipopolysaccharide Challenge. International Journal of Molecular Sciences, 2018, 19, 1980.	1.8	33
18	The effect of dietary asparagine supplementation on energy metabolism in liver of weaning pigs when challenged with lipopolysaccharide. Asian-Australasian Journal of Animal Sciences, 2018, 31, 548-555.	2.4	13

Yu-Lan Liu

#	Article	IF	CITATIONS
19	Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-κB and p38 signaling in weaned pigs after LPS challenge. European Journal of Nutrition, 2017, 56, 1433-1443.	1.8	48
20	Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids, 2017, 49, 1277-1291.	1.2	54
21	Effects of Biotite V supplementation on growth performance and the immunological responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. Livestock Science, 2017, 195, 112-117.	0.6	7
22	Response of Selenium and Selenogenome in Immune Tissues to LPS-Induced Inflammatory Reactions in Pigs. Biological Trace Element Research, 2017, 177, 90-96.	1.9	28
23	Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients, 2017, 9, 920.	1.7	118
24	Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS ONE, 2017, 12, e0182246.	1.1	13
25	Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R365-R373.	0.9	34
26	Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge. International Journal of Molecular Sciences, 2015, 16, 22438-22455.	1.8	22
27	The effect of aspartate on the energy metabolism in the liver of weanling pigs challenged with lipopolysaccharide. European Journal of Nutrition, 2015, 54, 581-588.	1.8	22
28	Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. Journal of Nutritional Biochemistry, 2014, 25, 456-462.	1.9	107
29	Aspartate alleviates liver injury and regulates mRNA expressions of TLR4 and NOD signaling-related genes in weaned pigs after lipopolysaccharide challenge. Journal of Nutritional Biochemistry, 2014, 25, 592-599.	1.9	43
30	Fish Oil Increases Muscle Protein Mass and Modulates Akt/FOXO, TLR4, and NOD Signaling in Weanling Piglets After Lipopolysaccharide Challenge1–3. Journal of Nutrition, 2013, 143, 1331-1339.	1.3	60
31	Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. British Poultry Science, 2011, 52, 255-263.	0.8	48
32	Activation of peroxisome proliferator-activated receptor- ^î 3 potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after Escherichia coli lipopolysaccharide challenge. Innate Immunity, 2009, 15, 169-178.	1.1	20
33	Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids, 2009, 37, 643-651.	1.2	44
34	Increased expression of the peroxisome proliferator-activated receptor Î ³ in the immune system of weaned pigs after Escherichia coli lipopolysaccharide injection. Veterinary Immunology and Immunopathology, 2008, 124, 82-92.	0.5	20
35	Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. British Journal of Nutrition, 2008, 100, 552-560.	1.2	210
36	Impact of feeding 2-hydroxy-4-(methylthio)butanoic acid andDL-methionine supplemented maize–soybean–rapeseed meal diets on growth performance and carcase quality of broilers. British Poultry Science, 2007, 48, 190-197.	0.8	8