
Paul Forster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8769660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zeolite- <i>like</i> Metalâ^'Organic Frameworks (ZMOFs) as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H ₂ -(<i>rho</i> -ZMOF) Interaction Studies. Journal of the American Chemical Society, 2009, 131, 2864-2870.	13.7	456
2	The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chemical Communications, 2004, , 368-369.	4.1	382
3	Nickel(II) Phosphate VSB-5: A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels. Angewandte Chemie - International Edition, 2001, 40, 2831-2834.	13.8	319
4	Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]â‹2 H2O: A New Hybrid Material with Three-Dimensional Niâ^'Oâ^'Ni Connectivity. Angewandte Chemie - International Edition, 2002, 41, 457-459.	13.8	309
5	Enhancing H ₂ Uptake by "Closeâ€Packing―Alignment of Open Copper Sites in Metal–Organi Frameworks. Angewandte Chemie - International Edition, 2008, 47, 7263-7266.	c _{13.8}	306
6	A High-Throughput Investigation of the Role of pH, Temperature, Concentration, and Time on the Synthesis of Hybrid Inorganic-Organic Materials. Angewandte Chemie - International Edition, 2005, 44, 7608-7611.	13.8	286
7	Hydrogen Adsorption in Nanoporous Nickel(II) Phosphates. Journal of the American Chemical Society, 2003, 125, 1309-1312.	13.7	261
8	Hybrid Inorganic–Organic Solids: An Emerging Class of Nanoporous Catalysts. Topics in Catalysis, 2003, 24, 79-86.	2.8	203
9	Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material. Journal of the American Chemical Society, 2006, 128, 16846-16850.	13.7	191
10	Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chemistry - A European Journal, 2006, 12, 7899-7905.	3.3	149
11	Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 15896-15902.	13.7	148
12	Synchrotron X-ray Powder Diffraction and Computational Investigation of Purely Siliceous Zeolite Y under Pressure. Journal of the American Chemical Society, 2004, 126, 12015-12022.	13.7	104
13	Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013, 117, 20116-20126.	3.1	92
14	Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Crystal Growth and Design, 2011, 11, 2572-2579.	3.0	90
15	Biphasic Solvothermal Synthesis:Â A New Approach for Hybrid Inorganicâ^'Organic Materials. Chemistry of Materials, 2002, 14, 17-20.	6.7	86
16	Readily available phosphate from minerals in early aqueous environments on Mars. Nature Geoscience, 2013, 6, 824-827.	12.9	84
17	Synthesis and characterization of Co7(OH)12(C2H4S2O6)(H2O)2—a single crystal structural study of a ferrimagnetic layered cobalt hydroxide. Journal of Physics and Chemistry of Solids, 2004, 65, 11-16.	4.0	54
18	Effect of Mixing of Metal Cations on the Topology of Metal Oxide Networks. Angewandte Chemie - International Edition, 2007, 46, 5877-5879.	13.8	51

PAUL FORSTER

#	Article	IF	CITATIONS
19	A Three-Dimensional Porous Metalâ~'Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	4.0	44
20	Template-Free Synthesis of the Nanoporous Nickel Phosphate VSB-5 under Microwave Irradiation. Chemistry of Materials, 2004, 16, 1394-1396.	6.7	43
21	Gaining Insights on the H ₂ –Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chemistry of Materials, 2016, 28, 7353-7361.	6.7	43
22	Structural Diversity in Coordination Polymers Composed of Divalent Transition Metals, 2,2′-Bipyridine, and Perfluorinated Dicarboxylates. Crystal Growth and Design, 2009, 9, 4759-4765.	3.0	42
23	Synthesis and Characterization of Two Polymorphic Crystalline Phases and an Amorphous Powder of Nickel(II) Bisimidazolate. Inorganic Chemistry, 2003, 42, 6147-6152.	4.0	39
24	The role of reaction conditions and ligand flexibility in metal-organic hybrid materials––examples from metal diglycolates and iminodiacetates. Microporous and Mesoporous Materials, 2004, 73, 57-64.	4.4	39
25	Structural Diversity and Energetics in Anhydrous Lithium Tartrates: Experimental and Computational Studies of Novel Chiral Polymorphs and Their Racemic and Meso Analogues. Crystal Growth and Design, 2011, 11, 221-230.	3.0	39
26	Self-assembly of halogen substituted phenazines. Journal of Materials Chemistry, 2010, 20, 867-873.	6.7	34
27	Preparation of the Binary Technetium Bromides: TcBr ₃ and TcBr ₄ . Journal of the American Chemical Society, 2009, 131, 910-911.	13.7	32
28	Single-crystal characterization of Co7(OH)6(H2O)3(C4H4O4)4â‹7H2O; A new cobalt succinate identified through high-throughput synthesis. Solid State Sciences, 2005, 7, 1549-1555.	3.2	31
29	Two Coordination Polymers Created via In Situ Ligand Synthesis Involving Câ^N and Câ^C Bond Formation. Inorganic Chemistry, 2007, 46, 8717-8721.	4.0	31
30	Crystal structure of octabromoditechnetate(iii) and a multi-configurational quantum chemical study of the δ→Π* transition in quadruply bonded [M2X8]2â~' dimers (M = Tc, Re; X = Cl, Br). Dalton Transactions, 2009, , 5954.	3.3	31
31	Pair distribution function analysis of pressure treated zeolite Na-A. Chemical Communications, 2009, , 3383.	4.1	31
32	Synthesis and Structure of Technetium Trichloride. Journal of the American Chemical Society, 2010, 132, 15864-15865.	13.7	31
33	Technetium Dichloride: A New Binary Halide Containing Metal–Metal Multiple Bonds. Journal of the American Chemical Society, 2011, 133, 8814-8817.	13.7	31
34	A thermally stable nanoporous nickel 5-sulfoisophthalate; crystal structure and adsorption properties. Chemical Communications, 2004, , 2148.	4.1	29
35	Metal–oxygen–metal arrays in lamellar hybrid materials: Cobalt and manganese 4-cyclohexene-1,2-dicarboxylates. Dalton Transactions, 2004, , 3365-3369.	3.3	28
36	Utility of Bifunctional <i>N</i> -Heterocyclic Phosphine (NHP)-Thioureas for Metal-Free Carbon–Phosphorus Bond Construction toward Regio- and Stereoselective Formation of Vinylphosphonates. Journal of Organic Chemistry, 2016, 81, 77-88.	3.2	25

PAUL FORSTER

#	Article	IF	CITATIONS
37	Self-Assembly of Pyrazine-Containing Tetrachloroacenes. Langmuir, 2011, 27, 14615-14620.	3.5	22
38	β-Technetium Trichloride: Formation, Structure, and First-Principles Calculations. Inorganic Chemistry, 2012, 51, 4915-4917.	4.0	21
39	Assessing zeolite frameworks for noble gas separations through a joint experimental and computational approach. Microporous and Mesoporous Materials, 2016, 222, 104-112.	4.4	20
40	Synthesis, structure, and first-principles calculations of [TcBr2(PMe3)4] and [Tc2Br4(PMe3)4] complexes. Dalton Transactions, 2009, , 10338.	3.3	19
41	Structural, Spectroscopic, and Multiconfigurational Quantum Chemical Investigations of the Electron-Rich Metalâ [°] Metal Triple-Bonded Tc ₂ X ₄ (PMe ₃) ₄ (X = Cl, Br) Complexes. Inorganic Chemistry. 2010. 49. 6646-6654.	4.0	19
42	Temperature-Programmed Desorption for Isotope Separation in Nanoporous Materials. Journal of Physical Chemistry C, 2018, 122, 1995-2001.	3.1	19
43	Technetium Tetrachloride Revisited: A Precursor to Lower-Valent Binary Technetium Chlorides. Inorganic Chemistry, 2012, 51, 8462-8467.	4.0	18
44	Trivalent Actinide and Lanthanide Complexation of 5,6-Dialkyl-2,6-bis(1,2,4-triazin-3-yl)pyridine (RBTP; R =) Tj ETC 52, 761-776.	Qq0 0 0 rgl 4.0	BT /Overlock 18
45	Ditechnetium Heptoxide Revisited: Solid-State, Gas-Phase, and Theoretical Studies. Inorganic Chemistry, 2016, 55, 10445-10452.	4.0	17
46	Molecular and Electronic Structures of M ₂ O ₇ (M = Mn, Tc, Re). Inorganic Chemistry, 2017, 56, 2448-2458.	4.0	16
47	Ionothermal Synthesis and Magnetic Studies of Novel Two-Dimensional Metalâ^'Formate Frameworks. Inorganic Chemistry, 2011, 50, 2159-2167.	4.0	15
48	Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation. American Mineralogist, 2014, 99, 1221-1232.	1.9	14
49	Hydrogen Uptake on Coordinatively Unsaturated Metal Sites in VSB-5: Strong Binding Affinity Leading to High-Temperature D ₂ /H ₂ Selectivity. Langmuir, 2017, 33, 14586-14591.	3.5	13
50	Two coordination polymers based on a new nickel fluoride cluster. Solid State Sciences, 2005, 7, 594-602.	3.2	12
51	Multi-configurational quantum chemical studies of the Tc2X8nâ~' (X = Cl, Br; n = 2, 3) anions. Crystallographic structure of octabromoditechnetate(3â~'). Dalton Transactions, 2012, 41, 2869.	3.3	12
52	Capturing the Details of N ₂ Adsorption in Zeolite X Using Stroboscopic Isotope Contrasted Neutron Total Scattering. Chemistry of Materials, 2018, 30, 296-302.	6.7	12
53	β-Technetium Dichloride: Solid-State Modulated Structure, Electronic Structure, and Physical Properties. Journal of the American Chemical Society, 2013, 135, 15955-15962.	13.7	10
54	A 70â€Yearâ€Old Mystery in Technetium Chemistry Explained by the New Technetium PolyoyometalataÂ[Hzeub27/sub20/sub20/sub22/sub21/sub24/sub20/sub20/sub20/sub268/sub21}€%s?	36%, 1H /	auto 2 dauba

PolyoxometalateÂ[H₇O₃]₄[Tc₂₀O₆₈] â<... 4H<subo 2</sub>
Chemistry - A European Journal, 2021, 27, 13624-13631.

Paul Forster

#	Article	IF	CITATIONS
55	Open framework metal monocarboxylates: nickel cyclopropionates containing 16- and 18-membered rings. Solid State Sciences, 2003, 5, 635-642.	3.2	9
56	Interaction of Hydrogen with Extraframework Cations in Zeolite Hosts Probed by Inelastic Neutron Scattering Spectroscopy. Journal of Nanoscience and Nanotechnology, 2010, 10, 49-59.	0.9	9
57	Probing the Presence of Multiple Metal–Metal Bonds in Technetium Chlorides by X-ray Absorption Spectroscopy: Implications for Synthetic Chemistry. Inorganic Chemistry, 2012, 51, 9563-9570.	4.0	9
58	A Trigonal-Prismatic Hexanuclear Technetium(II) Bromide Cluster: Solid-State Synthesis and Crystallographic and Electronic Structure. Inorganic Chemistry, 2013, 52, 5660-5662.	4.0	9
59	Unraveling the mystery of "tech red―– a volatile technetium oxide. Chemical Communications, 2018, 54, 1261-1264.	4.1	9
60	Hydrothermal synthesis and solid-state structure of Tc2(μ-O2CCH3)4Cl2. Polyhedron, 2013, 58, 115-119.	2.2	8
61	Lanthanide Complexation of 2,6â€Bis(5,6â€dipyridylâ€1,2,4â€triazinyl)pyrÂidine – Solvent―and Lanthanideâ€Ionâ€Controlled Ligand Coordination Mode and Denticity. European Journal of Inorganic Chemistry, 2016, 2016, 921-927.	2.0	8
62	The Nature of the Technetium Species Formed During the Oxidation of Technetium Dioxide with Oxygen and Water. European Journal of Inorganic Chemistry, 2018, 2018, 1137-1144.	2.0	8
63	Predicting partial atomic charges in siliceous zeolites. Microporous and Mesoporous Materials, 2019, 277, 184-196.	4.4	8
64	A hybrid cobalt disulfonate with a novel inorganic layer architecture exhibiting a field-induced magnetic transition. Journal of Materials Chemistry, 2009, 19, 2604.	6.7	7
65	Molecular and electronic structure of Tc2(O2CCH3)2Cl4 studied by multiconfigurational quantum chemical methods. Polyhedron, 2014, 70, 144-147.	2.2	5
66	A Decade of Dinuclear Technetium Complexes with Multiple Metal-Metal Bonds. European Journal of Inorganic Chemistry, 2014, 2014, 4484-4495.	2.0	5
67	Equation of state for technetium from Xâ€ray diffraction and first-principle calculations. Journal of Physics and Chemistry of Solids, 2016, 95, 6-11.	4.0	5
68	Investigating H ₂ Adsorption in Isostructural Metal–Organic Frameworks M-CUK-1 (M = Co) Tj ETQ 14, 8126-8136.	9q0 0 0 rg 8.0	BT /Overlock 5
69	Synthetic and Coordination Chemistry of the Heavier Trivalent Technetium Binary Halides: Uncovering Technetium Triiodide. Inorganic Chemistry, 2013, 52, 14309-14316.	4.0	4
70	Xâ€ray Crystallographic and Firstâ€Principles Theoretical Studies of K ₂ [TcOCl ₅] and UV/Vis Investigation of the [TcOCl ₅] ^{2–} and [TcOCl ₄] [–] lons. European Journal of Inorganic Chemistry, 2013, 2013, 1097-1104.	2.0	3
71	Hydrothermal synthesis and solid-state structures of polynuclear technetium iodide compounds. Inorganica Chimica Acta, 2015, 424, 329-335.	2.4	3
72	Evaluating the Selectivity of Sorbents for Noble Gas Separations across a Range of Temperatures, Loadings, and Gas Compositions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1377-1385.	1.2	3

PAUL FORSTER

#	Article	IF	CITATIONS
73	Synthesis and chemical stability of technetium nitrides. Chemical Communications, 2021, 57, 8079-8082.	4.1	3
74	β -Technetium: An allotrope with a nonstandard volume-pressure relationship. Physical Review Materials, 2021, 5, .	2.4	2
75	Molecular and Electronic Structure of Re2Br4(PMe3)4. Inorganic Chemistry, 2016, 55, 7111-7116.	4.0	1
76	An Atomistic Understanding of the Unusual Thermal Behavior of the Molecular Oxide Tc2O7. Inorganic Chemistry, 2019, 58, 5468-5475.	4.0	1
77	Solvothermal synthesis and solid-state characterization of metal-metal bonded tetracarboxylatoditechnetium(II,III) polymers. Polyhedron, 2020, 180, 114418.	2.2	1