Edwin S Levitan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8769530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Translational Stroke Research, 2021, 12, 513-529.	4.2	26
2	Temporally and spatially partitioned neuropeptide release from individual clock neurons. Proceedings of the United States of America, 2021, 118, .	7.1	15
3	Vesicular Antipsychotic Drug Release Evokes an Extra Phase of Dopamine Transmission. Schizophrenia Bulletin, 2020, 46, 643-649.	4.3	6
4	Stac protein regulates release of neuropeptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29914-29924.	7.1	9
5	Regional Variation in Striatal Dopamine Spillover and Release Plasticity. ACS Chemical Neuroscience, 2020, 11, 888-899.	3.5	5
6	Activity-evoked and spontaneous opening of synaptic fusion pores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17039-17044.	7.1	14
7	Ptp4E regulates vesicular packaging for monoamine-neuropeptide co-transmission. Journal of Cell Science, 2019, 132, .	2.0	7
8	Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1617-1622.	7.1	13
9	Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores. European Journal of Cell Biology, 2017, 96, 402-406.	3.6	8
10	Limited distal organelles and synaptic function in extensive monoaminergic innervation. Journal of Cell Science, 2017, 130, 2520-2529.	2.0	9
11	Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics. PLoS Genetics, 2016, 12, e1005941.	3.5	23
12	Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Molecular Biology of the Cell, 2016, 27, 3245-3256.	2.1	56
13	Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons. Molecular Biology of the Cell, 2016, 27, 3214-3220.	2.1	9
14	Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles. Journal of Neuroscience, 2016, 36, 11781-11787.	3.6	23
15	Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Scientific Reports, 2016, 6, 23416.	3.3	6
16	Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles. Molecular Biology of the Cell, 2015, 26, 2664-2672.	2.1	16
17	Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles. Molecular Biology of the Cell, 2015, 26, 2466-2474.	2.1	37
18	Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4485-94.	7.1	18

EDWIN S LEVITAN

#	Article	IF	CITATIONS
19	Implications of Cellular Models of Dopamine Neurons for Schizophrenia. Progress in Molecular Biology and Translational Science, 2014, 123, 53-82.	1.7	12
20	Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. Journal of Neurophysiology, 2014, 112, 2779-2790.	1.8	24
21	Crimpy Enables Discrimination of Presynaptic and Postsynaptic Pools of a BMP at the Drosophila Neuromuscular Junction. Developmental Cell, 2014, 31, 586-598.	7.0	37
22	Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3597-3601.	7.1	28
23	Drosophila Syd-1, Liprin-Â, and Protein Phosphatase 2A B' Subunit Wrd Function in a Linear Pathway to Prevent Ectopic Accumulation of Synaptic Materials in Distal Axons. Journal of Neuroscience, 2014, 34, 8474-8487.	3.6	26
24	Pacemaker Rate and Depolarization Block in Nigral Dopamine Neurons: A Somatic Sodium Channel Balancing Act. Journal of Neuroscience, 2012, 32, 14519-14531.	3.6	47
25	The p150Glued CAP-Gly Domain Regulates Initiation of Retrograde Transport at Synaptic Termini. Neuron, 2012, 74, 344-360.	8.1	126
26	Neuropeptide Delivery to Synapses by Long-Range Vesicle Circulation and Sporadic Capture. Cell, 2012, 148, 1029-1038.	28.9	137
27	Functional characterization of etherâ€Ãâ€goâ€goâ€related gene potassium channels in midbrain dopamine neurons – implications for a role in depolarization block. European Journal of Neuroscience, 2012, 36, 2906-2916.	2.6	38
28	Synaptic neuropeptide release induced by octopamine without Ca ²⁺ entry into the nerve terminal. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4477-4481.	7.1	29
29	Differential Control of Presynaptic CaMKII Activation and Translocation to Active Zones. Journal of Neuroscience, 2011, 31, 9093-9100.	3.6	32
30	Imaging the <i>Drosophila</i> Neuromuscular Junction (NMJ): Basic Optical Principles and Equipment. Cold Spring Harbor Protocols, 2010, 2010, pdb.top92.	0.3	1
31	Imaging Neuropeptide Release in the <i>Drosophila</i> Neuromuscular Junction (NMJ). Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5529.	0.3	2
32	Ca _v 1.3 Channel Voltage Dependence, Not Ca ²⁺ Selectivity, Drives Pacemaker Activity and Amplifies Bursts in Nigral Dopamine Neurons. Journal of Neuroscience, 2009, 29, 15414-15419.	3.6	129
33	Presynaptic Ryanodine Receptor–CamKII Signaling is Required for Activity-dependent Capture of Transiting Vesicles. Journal of Molecular Neuroscience, 2009, 37, 146-150.	2.3	31
34	Signaling for Vesicle Mobilization and Synaptic Plasticity. Molecular Neurobiology, 2008, 37, 39-43.	4.0	33
35	Prolonged presynaptic posttetanic cyclic GMP signaling in <i>Drosophila</i> motoneurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13610-13613.	7.1	19
36	Presynaptic Ryanodine Receptor-Activated Calmodulin Kinase II Increases Vesicle Mobility and Potentiates Neuropeptide Release, Journal of Neuroscience, 2007, 27, 7799-7806	3.6	81

EDWIN S LEVITAN

#	Article	IF	CITATIONS
37	In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nature Protocols, 2007, 2, 1117-1125.	12.0	46
38	Nearly Neutral Secretory Vesicles in Drosophila Nerve Terminals. Biophysical Journal, 2006, 90, L45-L47.	0.5	20
39	Activity-dependent synaptic capture of transiting peptidergic vesicles. Nature Neuroscience, 2006, 9, 896-900.	14.8	88
40	Ether-a-go-go Related Gene Potassium Channels: What's All the Buzz About?. Schizophrenia Bulletin, 2006, 33, 1263-1269.	4.3	39
41	PDF Cycling in the Dorsal Protocerebrum of the Drosophila Brain Is Not Necessary for Circadian Clock Function. Journal of Biological Rhythms, 2006, 21, 104-117.	2.6	45
42	Activity-dependent liberation of synaptic neuropeptide vesicles. Nature Neuroscience, 2005, 8, 173-178.	14.8	103
43	Using GFP to image peptide hormone and neuropeptide release in vitro and in vivo. Methods, 2004, 33, 281-286.	3.8	9
44	Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals. Neuron, 2004, 41, 755-766.	8.1	114
45	Unexpected Mobility Variation among Individual Secretory Vesicles Produces an Apparent Refractory Neuropeptide Pool. Biophysical Journal, 2003, 84, 4127-4134.	0.5	21
46	Nerve Growth Factor-Induced Differentiation Changes the Cellular Organization of Regulated Peptide Release by PC12 Cells. Journal of Neuroscience, 2002, 22, 3890-3897.	3.6	18
47	Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factorâ€differentiated PC12 Cells. Journal of Physiology, 2002, 542, 395-402.	2.9	35
48	Visualization of neuropeptide expression, transport, and exocytosis inDrosophila melanogaster. Journal of Neurobiology, 2001, 49, 159-172.	3.6	118
49	Free intracellular Mg 2+ concentration and inhibition of NMDA responses in cultured rat neurons. Journal of Physiology, 2001, 533, 729-743.	2.9	39
50	Acid Prohormone Sequence Determines Size, Shape, and Docking of Secretory Vesicles in Atrial Myocytes. Circulation Research, 2001, 89, E23-9.	4.5	46
51	Metallothionein, Nitric Oxide and Zinc Homeostasis in Vascular Endothelial Cells. Journal of Nutrition, 2000, 130, 1467S-1470S.	2.9	61
52	RPTPμ and protein tyrosine phosphorylation regulate K+channel mRNA expression in adult cardiac myocytes. American Journal of Physiology - Cell Physiology, 2000, 278, C397-C403.	4.6	17
53	Distinct Structural Requirements for Clustering and Immobilization of K+ Channels by PSD-95. Journal of General Physiology, 1999, 113, 71-80.	1.9	65
54	Dynamic regulation of K+ channel gene expression in differentiated cells. , 1998, 37, 60-68.		55

EDWIN S LEVITAN

#	Article	IF	CITATIONS
55	Cell-cell contact between adult rat cardiac myocytes regulates Kv1.5 and Kv4.2 K ⁺ channel mRNA expression. American Journal of Physiology - Cell Physiology, 1998, 275, C1473-C1480.	4.6	22
56	Neuronal Peptide Release Is Limited by Secretory Granule Mobility. Neuron, 1997, 19, 1095-1102.	8.1	153
57	Decreased Expression of Kv4.2 and Novel Kv4.3 K ⁺ Channel Subunit mRNAs in Ventricles of Renovascular Hypertensive Rats. Circulation Research, 1997, 81, 533-539.	4.5	93
58	Effects of caffeine on intracellular calcium, calcium current and calcium-dependent potassium current in anterior pituitary GH3 cells. Pflugers Archiv European Journal of Physiology, 1994, 426, 12-20.	2.8	24