
Mariana Ribas-Ribas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8769234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer. FEMS Microbiology Ecology, 2017, 93, .	2.7	50
2	Air–sea CO2 fluxes in the north-eastern shelf of the Gulf of CÃidiz (southwest Iberian Peninsula). Marine Chemistry, 2011, 123, 56-66.	2.3	42
3	Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuarine, Coastal and Shelf Science, 2011, 95, 367-376.	2.1	41
4	Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 127, 7-27.	1.4	36
5	Sea Surface Scanner (S3): A Catamaran for High-Resolution Measurements of Biogeochemical Properties of the Sea Surface Microlayer. Journal of Atmospheric and Oceanic Technology, 2017, 34, 1433-1448.	1.3	30
6	Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean. Marine Ecology - Progress Series, 2016, 555, 29-47.	1.9	27
7	Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas. Biogeosciences, 2014, 11, 4339-4355.	3.3	26
8	Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria. Geophysical Research Letters, 2018, 45, 4230-4237.	4.0	25
9	Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon dioxide and the availability of light and nutrients. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 127, 60-74.	1.4	21
10	Air-Sea CO2-Exchange in a Large Annular Wind-Wave Tank and the Effects of Surfactants. Frontiers in Marine Science, 2018, 5, .	2.5	21
11	Spatio-temporal variability of the dissolved organic carbon and nitrogen in a coastal area affected by river input: The north eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Marine Chemistry, 2011, 126, 295-308.	2.3	20
12	Tidal and seasonal carbon and nutrient dynamics of the Guadalquivir estuary and the Bay of C $ ilde{A}_i$ diz (SW) Tj ETQ	2q0 <u>9 9</u> rgB	T /Qyerlock I
13	Influence of solar radiation on biogeochemical parameters and fluorescent dissolved organic matter (FDOM) in the sea surface microlayer of the southern coastal North Sea. Elementa, 2018, 6, 15.	3.2	18
14	Global reduction of <i>in situ</i> CO ₂ transfer velocity by natural surfactants in the sea-surface microlayer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190763.	2.1	18
15	Oxygen Profiles Across the Sea-Surface Microlayer—Effects of Diffusion and Biological Activity. Frontiers in Marine Science, 2019, 6, .	2.5	16
16	High-resolution variability of the enrichment of fluorescence dissolved organic matter in the sea surface microlayer of an upwelling region. Elementa, 2017, 5, .	3.2	15

17	The MILAN Campaign: Studying Diel Light Effects on the Air–Sea Interface. Bulletin of the American Meteorological Society, 2020, 101, E146-E166.	3.3	14

18High Resolution pH Measurements Using a Lab-on-Chip Sensor in Surface Waters of Northwest
European Shelf Seas. Sensors, 2018, 18, 2622.3.813

MARIANA RIBAS-RIBAS

#	Article	IF	CITATIONS
19	Blue pigmentation of neustonic copepods benefits exploitation of a prey-rich niche at the air-sea boundary. Scientific Reports, 2018, 8, 11510.	3.3	12
20	High-resolution observations on enrichment processes in the sea-surface microlayer. Scientific Reports, 2018, 8, 13122.	3.3	10
21	Seasonal distribution of the inorganic carbon system and net ecosystem production in the north eastern shelf of the Gulf of Cádiz (Southwest Iberian Peninsula). Continental Shelf Research, 2011, 31, 1931-1942.	1.8	9
22	The Ocean's Skin Layer in the Tropics. Journal of Geophysical Research: Oceans, 2019, 124, 59-74.	2.6	9
23	Reconsideration of seawater surfactant activity analysis based on an inter-laboratory comparison study. Marine Chemistry, 2019, 208, 103-111.	2.3	9
24	<i>Sniffle</i> : a step forward to measure <i>in situ</i> CO2 fluxes with the floating chamber technique. Elementa, 2018, 6, .	3.2	8
25	Gas transfer velocities in Norwegian fjords and the adjacent North Atlantic waters. Oceanologia, 2019, 61, 460-470.	2.2	6
26	Overstated Potential for Seagrass Meadows to Mitigate Coastal Ocean Acidification. Frontiers in Marine Science, 2021, 8, .	2.5	6
27	Picophytoplankton and carbon cycle on the northeastern shelf of the Gulf of C $ ilde{A}_i$ diz (SW Iberian) Tj ETQq1 1 0.74	84314 rgE 0.6	BT /Overlock
28	Impact of Nonzero Intercept Gas Transfer Velocity Parameterizations on Global and Regional Ocean–Atmosphere CO2 Fluxes. Geosciences (Switzerland), 2019, 9, 230.	2.2	3
29	Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Marine Ecology - Progress Series, 2021, 658, 59-74.	1.9	3
30	Effects of Natural and Artificial Surfactants on Diffusive Boundary Dynamics and Oxygen Exchanges across the Air–Water Interface. Oceans, 2021, 2, 752-771.	1.3	3
31	Spatial patterns of phytoplankton composition and upper-ocean biogeochemistry do not follow carbonate chemistry gradients in north-west European Shelf seas. ICES Journal of Marine Science, 2017, 74, 965-977.	2.5	1
32	Technologies for Observing the Near Sea Surface. Oceanography, 2021, , 88-89.	1.0	1
33	The Milan Campaign: Studying the Sea Surface Microlayer. Bulletin of the American Meteorological Society, 2020, 101, 299-304.	3.3	0