Christine Boettcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
	Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera) Tj ETQq1		<u> </u>
1	61, 3615-3625.	4.8	211
2	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	5.7	178
3	Plant oxylipins: Plant responses to 12â€oxoâ€phytodienoic acid are governed by its specific structural and functional properties. FEBS Journal, 2009, 276, 4693-4704.	4.7	99
4	Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Australian Journal of Grape and Wine Research, 2011, 17, 1-8.	2.1	93
5	Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biology, 2013, 13, 222.	3.6	93
6	Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases. Environmental Science & Technology, 2015, 49, 12509-12518.	10.0	92
7	Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera) Tj ETQq1 1 0 conjugation in plant development. Journal of Experimental Botany, 2011, 62, 4267-4280.	.784314 r 4.8	gBT /Over 85
8	Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis. Plant Cell, 2012, 24, 4525-4538.	6.6	70
9	cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. Planta, 2007, 226, 629-637.	3.2	68
10	Delaying Riesling grape berry ripening with a synthetic auxin affects malic acid metabolism and sugar accumulation, and alters wine sensory characters. Functional Plant Biology, 2012, 39, 745.	2.1	41
11	A Novel Tool for Studying Auxin-Metabolism: The Inhibition of Grapevine Indole-3-Acetic Acid-Amido Synthetases by a Reaction Intermediate Analogue. PLoS ONE, 2012, 7, e37632.	2.5	39
12	Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. BMC Plant Biology, 2015, 15, 223.	3.6	38
13	Shiraz Wines Made from Grape Berries (<i>Vitis vinifera</i>) Delayed in Ripening by Plant Growth Regulator Treatment Have Elevated Rotundone Concentrations and "Pepper―Flavor and Aroma. Journal of Agricultural and Food Chemistry, 2015, 63, 2137-2144.	5.2	35
14	Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. Functional Plant Biology, 2013, 40, 566.	2.1	34
15	Various Influences of Harvest Date and Fruit Sugar Content on Different Wine Flavor and Aroma Compounds. American Journal of Enology and Viticulture, 2014, 65, 341-353.	1.7	32
16	Hormonal Control of Grape Berry Ripening. , 2009, , 229-261.		31
17	Jasmonic acidâ€isoleucine formation in grapevine (<i>Vitis vinifera</i> L.) by two enzymes with distinct transcription profiles. Journal of Integrative Plant Biology, 2015, 57, 618-627.	8.5	25
18	Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Plant Molecular Biology, 2020, 103, 91-111.	3.9	21

#	Article	IF	CITATIONS
19	Increase in Cytokinin Levels during Ripening in Developing <i>Vitis vinifera</i> cv. Shiraz Berries. American Journal of Enology and Viticulture, 2013, 64, 527-531.	1.7	19

Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus) Tj ETQq000 rgBT (Overlock 10 Tf 50 10 Tf 50 10 Tf 50

21	Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567â€A. Molecular Plant Pathology, 2019, 20, 211-222.	4.2	15
22	Fermentation of grapes throughout development identifies stages critical to the development of wine volatile composition. Australian Journal of Grape and Wine Research, 2018, 24, 24-37.	2.1	14
23	Peduncle-girdling of Shiraz (<i>Vitis vinifera</i> L.) bunches and sugar concentration at the time of girdling affect wine volatile compounds. Australian Journal of Grape and Wine Research, 2018, 24, 206-218.	2.1	14
24	Hormonal Control of Grape Berry Development and Ripening. , 2012, , 194-217.		9
25	Postâ€veraison restriction of phloem import into Riesling (Vitis vinifera L.) berries induces transient and stable changes to fermentationâ€derived and varietal wine volatiles. Australian Journal of Grape and Wine Research, 2019, 25, 286-292.	2.1	7
26	Other hormonal signals during ripening , 2014, , 202-216.		6
27	Use of auxin to delay ripening: sensory and biochemical evaluation of Cabernet Sauvignon and Shiraz. Australian Journal of Grape and Wine Research, 2022, 28, 208-217.	2.1	4
28	Timing of auxin treatment affects grape berry growth, ripening timing and the synchronicity of sugar accumulation. Australian Journal of Grape and Wine Research, 2022, 28, 232-241.	2.1	3
29	Understanding the control of grape berry ripening and developing opportunities for its manipulation. Acta Horticulturae, 2017, , 1-10.	0.2	1