Thomas Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768496/publications.pdf

Version: 2024-02-01

172457 223800 3,006 49 29 46 citations h-index g-index papers 49 49 49 2942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics (United Kingdom), 2001, 25, 245-260.	3.9	460
2	Comparison of empirical methods for building agent-based models in land use science. Journal of Land Use Science, 2007, 2, 31-55.	2.2	256
3	An agent-based simulation model of human–environment interactions in agricultural systems. Environmental Modelling and Software, 2011, 26, 845-859.	4.5	217
4	Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agricultural Economics (United Kingdom), 2015, 46, 81-97.	3.9	148
5	Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems and Environment, 2015, 199, 394-406.	5.3	109
6	Representation of decision-making in European agricultural agent-based models. Agricultural Systems, 2018, 167, 143-160.	6.1	108
7	Agentâ€based Modelling of Climate Adaptation and Mitigation Options in Agriculture. Journal of Agricultural Economics, 2014, 65, 323-348.	3.5	106
8	Capturing the complexity of water uses and water users within a multi-agent framework. Water Resources Management, 2006, 21, 129-148.	3.9	102
9	Land use decisions in developing countries and their representation in multi-agent systems. Journal of Land Use Science, 2006, 1, 29-44.	2.2	85
10	Climate variability, food security and poverty: Agent-based assessment of policy options for farm households in Northern Ghana. Environmental Science and Policy, 2015, 47, 95-107.	4.9	83
11	Multi-agent simulation for the targeting of development policies in less-favored areas. Agricultural Systems, 2006, 88, 28-43.	6.1	80
12	Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa. Agricultural Systems, 2018, 163, 7-15.	6.1	76
13	Social network effects on the adoption of sustainable natural resource management practices in Ethiopia. International Journal of Sustainable Development and World Ecology, 2013, 20, 477-483.	5.9	75
14	Creating Agents and Landscapes for Multiagent Systems from Random Samples. Ecology and Society, 2006, 11, .	2.3	73
15	Dealing with Uncertainty in Agentâ€Based Simulation: Farmâ€Level Modeling of Adaptation to Climate Change in Southwest Germany. American Journal of Agricultural Economics, 2015, 97, 833-854.	4.3	72
16	Hydropower development in Vietnam: Involuntary resettlement and factors enabling rehabilitation. Land Use Policy, 2013, 31, 536-544.	5.6	70
17	â€~Smart' policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture. Ecological Economics, 2017, 132, 91-103.	5.7	70
18	Quantifying pesticide overuse from farmer and societal points of view: An application to Thailand. Crop Protection, 2013, 53, 161-168.	2.1	62

#	Article	IF	CITATIONS
19	Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach. Ecological Economics, 2007, 64, 387-401.	5.7	61
20	An Overview of Computational Modeling in Agricultural and Resource Economics. Canadian Journal of Agricultural Economics, 2009, 57, 417-429.	2.1	55
21	Climate variability, consumption risk and poverty in semi-arid Northern Ghana: Adaptation options for poor farm households. Environmental Development, 2014, 12, 2-15.	4.1	48
22	Networks of Rural Producer Organizations in Uganda: What Can be Done to Make Them Work Better?. World Development, 2016, 78, 572-586.	4.9	46
23	Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany. Land Use Policy, 2015, 46, 50-64.	5.6	45
24	Agentâ€based modeling forâ€, <i>ex ante</i> ex anteforâ€,assessment of tree crop innovations: litchis in northern Thailand. Agricultural Economics (United Kingdom), 2010, 41, 519-536.	3.9	44
25	The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agentâ€Based Modeling. Canadian Journal of Agricultural Economics, 2009, 57, 513-536.	2.1	42
26	Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agentâ€based simulation results for Ethiopia. Agricultural Economics (United Kingdom), 2017, 48, 693-706.	3.9	39
27	Patterns and processes of pasture to crop conversion in Brazil: Evidence from Mato Grosso State. Land Use Policy, 2016, 55, 108-120.	5.6	38
28	A software coupling approach to assess low-cost soil conservation strategies for highland agriculture in Vietnam. Environmental Modelling and Software, 2013, 45, 116-128.	4.5	35
29	Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach. Agricultural Systems, 2014, 123, 108-119.	6.1	33
30	Quantifying the economic importance of irrigation water reuse in a Chilean watershed using an integrated agent-based model. Water Resources Research, 2015, 51, 648-668.	4.2	29
31	Land use intensification, commercialization and changes in pest management of smallholder upland agriculture in Thailand. Environmental Science and Policy, 2015, 45, 11-19.	4.9	29
32	Agricultural commercialization: Risk perceptions, risk management and the role of pesticides in Thailand. Kasetsart Journal of Social Sciences, 2017, 38, 264-272.	0.1	26
33	Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil? Results from bioeconomic microsimulation. Regional Environmental Change, 2018, 18, 117-128.	2.9	25
34	Assessing the Income Effects of Group Certification for Smallholder Coffee Farmers: Agentâ€based Simulation in Uganda. Journal of Agricultural Economics, 2017, 68, 727-748.	3.5	24
35	You are not alone: social capital and risk exposure in rural Ethiopia. Food Security, 2016, 8, 799-813.	5.3	22
36	Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?. Land Use Policy, 2021, 109, 105618.	5.6	21

#	Article	IF	CITATIONS
37	The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach. Agricultural Systems, 2018, 165, 1-13.	6.1	16
38	The Agricultural Technology–Market Linkage under Liberalisation in Ghana: Evidence from Micro Data. Journal of African Economies, 2008, 17, 62-84.	1.8	12
39	Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics (United Kingdom), 2001, 25, 245-260.	3.9	11
40	A model-based assessment of the environmental impact of land-use change across scales in Southern Amazonia. Regional Environmental Change, 2018, 18, 161-173.	2.9	9
41	Bridging the gap between models and users: A lightweight mobile interface for optimized farming decisions in interactive modeling sessions. Agricultural Systems, 2022, 195, 103315.	6.1	8
42	Capturing the complexity of water uses and water users within a multi-agent framework. , 2006, , 129-148.		7
43	ON-FARM TRADE-OFFS FOR OPTIMAL AGRICULTURAL PRACTICES IN MATO GROSSO, BRAZIL. Revista De Economia E Agroneg $ ilde{A}^3$ cio, 2017, 15, .	0.1	7
44	How Bayesian Are Farmers When Making Climate Adaptation Decisions? A Computer Laboratory Experiment for Parameterising Models of Expectation Formation. Journal of Agricultural Economics, 2021, 72, 805-828.	3.5	6
45	Agricultural Pesticide Use in Mountainous Areas of Thailand and Vietnam: Towards Reducing Exposure and Rationalizing Use. Springer Environmental Science and Engineering, 2013, , 149-173.	0.1	5
46	No more double cropping in Mato Grosso, Brazil? Evaluating the potential impact of climate change on the profitability of farm systems. Agricultural Systems, 2021, 190, 103104.	6.1	4
47	How eco-efficient are crop farms in the Southern Amazon region? Insights from combining agent-based simulations with robust order-m eco-efficiency estimation. Science of the Total Environment, 2022, 819, 153072.	8.0	4
48	Integrative Water Research: GLOWA Volta. , 2006, , 169-186.		3
49	Integrated Modeling of Agricultural Systems in Mountainous Areas. Springer Environmental Science and Engineering, 2013, , 367-432.	0.1	0