Ayako Matsunaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768445/publications.pdf

Version: 2024-02-01

15 papers	249 citations	7 h-index	996975 15 g-index
16	16	16	364
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: a study of 106 Japanese patients. Journal of Inherited Metabolic Disease, 2017, 40, 685-693.	3.6	78
2	Cardiomyopathy in children with mitochondrial disease: Prognosis and genetic background. International Journal of Cardiology, 2019, 279, 115-121.	1.7	35
3	Mortality of Japanese patients with Leigh syndrome: Effects of age at onset and genetic diagnosis. Journal of Inherited Metabolic Disease, 2020, 43, 819-826.	3.6	32
4	Clinical and molecular basis of hepatocerebral mitochondrial DNA depletion syndrome in Japan: evaluation of outcomes after liver transplantation. Orphanet Journal of Rare Diseases, 2020, 15, 169.	2.7	29
5	Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Scientific Reports, 2019, 9, 10549.	3.3	19
6	Long-term prognosis and genetic background of cardiomyopathy in 223 pediatric mitochondrial disease patients. International Journal of Cardiology, 2021, 341, 48-55.	1.7	14
7	Neonatal-onset mitochondrial disease: clinical features, molecular diagnosis and prognosis. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 329-334.	2.8	9
8	Therapeutic effect of N-carbamylglutamate in CPS1 deficiency. Molecular Genetics and Metabolism Reports, 2020, 24, 100622.	1.1	8
9	Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency. Molecular Genetics and Metabolism Reports, 2020, 24, 100610.	1.1	6
10	Outcomes of liver transplantation for mitochondrial respiratory chain disorder in children. Pediatric Transplantation, 2021, 25, e14091.	1.0	6
11	Two cases of a non-progressive hepatic form of glycogen storage disease type IV with atypical liver pathology. Molecular Genetics and Metabolism Reports, 2020, 24, 100601.	1.1	4
12	A Japanese single-center experience of the efficacy and safety of asfotase alfa in pediatric-onset hypophosphatasia. Orphanet Journal of Rare Diseases, 2022, 17, 78.	2.7	3
13	Macroscopic Characteristics of the Native Liver in Children With MPV17â€Related Mitochondrial DNA Depletion Syndrome: An Indication for Performing Liver Transplantation?. Liver Transplantation, 2022, 28, 497-500.	2.4	2
14	Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453GÂ>ÂA. Mitochondrion, 2022, 63, 1-8.	3.4	2
15	Prenatal diagnosis of severe mitochondrial diseases caused by nuclear gene defects: a study in Japan. Scientific Reports, 2021, 11, 3531.	3.3	1