Francisco Carlos Lavarda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768382/publications.pdf

Version: 2024-02-01

23 papers 343 citations

759233 12 h-index 18 g-index

23 all docs 23 docs citations

times ranked

23

476 citing authors

#	Article	IF	CITATIONS
1	Theoretical evaluation of chemical substitutions along the main chain of poly(3â€hexylthienyleneâ€vinylene) for solar cell applications. Polymer International, 2018, 67, 197-203.	3.1	2
2	Effects of Mechanical Stretching on the Properties of Conjugated Polymers: Case Study for MEHâ€PPV and P3HT Oligomers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1413-1426.	2.1	11
3	One-Step Synthesis of Methoxylated Phloroglucinol Derivatives Promoted by Niobium Pentachloride: An Experimental and Theoretical Approach. Synthesis, 2017, 49, 2402-2410.	2.3	9
4	Modifying electronic properties of ICBA through chemical substitutions for solar cell applications. Structural Chemistry, 2017, 28, 1133-1140.	2.0	6
5	Theoretical-Experimental Photophysical Investigations of the Solvent Effect on the Properties of Green- and Blue-Light-Emitting Quinoline Derivatives. Journal of Fluorescence, 2017, 27, 1709-1720.	2.5	21
6	Design of diblock co-oligomers as low bandgap small molecules for organic solar cells. Molecular Simulation, 2017, 43, 1496-1501.	2.0	3
7	New Class of Organic Hole-Transporting Materials Based on Xanthene Derivatives for Organic Electronic Applications. Journal of Physical Chemistry C, 2017, 121, 12999-13007.	3.1	13
8	Copolymers with similar comonomers: Tuning frontier orbital energies for application in organic solar cells. Polymer Engineering and Science, 2016, 56, 479-487.	3.1	10
9	Electronic structure of polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) derivatives for organic solar cell applications. Organic Electronics, 2016, 33, 246-252.	2.6	19
10	Reorganization energy for hole and electron transfer of poly(3-hexylthiophene) derivatives. Polymer, 2016, 99, 105-111.	3.8	34
11	Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochimica Acta, 2016, 192, 8-14.	5.2	41
12	Calculation of low bandgap homopolymers: Comparison of TD-DFT methods with experimental oligomer series. Chemical Physics Letters, 2016, 645, 169-173.	2.6	26
13	Electronic structure of a hydrogenated gallium nitride nanoparticle. Physica Status Solidi (B): Basic Research, 2015, 252, 2317-2322.	1.5	1
14	Effect of the length of alkyl side chains in the electronic structure of conjugated polymers. Materials Research, 2014, 17, 1369-1374.	1.3	23
15	Theoretical investigation of geometric configurations and vibrational spectra in citric acid complexes. Materials Research, 2014, 17, 550-556.	1.3	18
16	The correlation between electronic structure and antimalarial activity of alkoxylated and hydroxylated chalcones. Medicinal Chemistry Research, 2014, 23, 580-586.	2.4	14
17	Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM. Materials Chemistry and Physics, 2014, 148, 923-932.	4.0	25
18	Structure of P3HT in the solid state. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1350-1354.	2.1	14

#	Article	IF	CITATIONS
19	Effect of chemical modifications on the electronic structure of poly(3â€hexylthiophene). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 842-846.	2.1	17
20	Gamma-Ray Dosimetric Properties of Conjugated Polymers in Solution. Current Physical Chemistry, 2013, 3, 431-440.	0.2	8
21	Febrifugine derivative antimalarial activity: quantum mechanical predictors. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2008, 50, 21-24.	1.1	3
22	Xeractinol: a new flavanonol C-glucoside from Paepalanthus argenteus var. argenteus (Bongard) Hensold (Eriocaulaceae). Journal of the Brazilian Chemical Society, 2007, 18, 437-439.	0.6	10
23	Relation between antioxidant activity and electronic structure of phenols. International Journal of Quantum Chemistry, 2003, 95, 219-223.	2.0	15