Äke Strid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic changes in cucumber leaves are enhanced by blue light but differentially affected by UV interactions with light signalling pathways in the visible spectrum Plant Science, 2022, 321, 111326.	3.6	7
2	The outer influences the inner: Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin. Food Chemistry, 2021, 338, 127782.	8.2	24
3	Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: A case study using dill (Anethum graveolens). Food Chemistry, 2021, 344, 128714.	8.2	18
4	Ultraviolet <scp>â€B</scp> exposure and exogenous hydrogen peroxide application lead to crossâ€ŧolerance toward drought in <scp><i>Nicotiana tabacum</i></scp> L. Physiologia Plantarum, 2021, 173, 666-679.	5.2	13
5	Downsizing in plants—UV light induces pronounced morphological changes in the absence of stress. Plant Physiology, 2021, 187, 378-395.	4.8	22
6	Effects of <scp>UV</scp> radiation on transcript and metabolite accumulation are dependent on monochromatic light background in cucumber. Physiologia Plantarum, 2021, 173, 750-761.	5.2	10
7	A tribute to Robert John Porra (august 7, 1931–may 16, 2019). Photosynthesis Research, 2021, 147, 125-130.	2.9	1
8	Ethylene mediates the branching of the jasmonateâ€induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal, 2020, 18, 1223-1240.	8.3	101
9	UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Scientia Horticulturae, 2020, 263, 109110.	3.6	47
10	The photoreceptor UVR8 mediates the perception of both UVâ€B and UVâ€A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant, Cell and Environment, 2020, 43, 1513-1527.	5.7	52
11	Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochemical and Photobiological Sciences, 2020, 19, 217-228.	2.9	5
12	Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber. Frontiers in Plant Science, 2020, 11, 610011.	3.6	28
13	Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiology and Biochemistry, 2019, 134, 94-102.	5.8	86
14	UV regulates the expression of phenylpropanoid biosynthesis genes in cucumber (Cucumis sativus L.) in an organ and spectrum dependent manner. Photochemical and Photobiological Sciences, 2019, 18, 424-433.	2.9	34
15	Proline 411 biases the conformation of the intrinsically disordered plant UVR8 photoreceptor C27 domain altering the functional properties of the peptide. Scientific Reports, 2019, 9, 818.	3.3	5
16	Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling. Photochemical and Photobiological Sciences, 2019, 18, 1675-1684.	2.9	33
17	Multiple roles for Vitamin B6 in plant acclimation to UV-B. Scientific Reports, 2019, 9, 1259.	3.3	29
18	Editorial: Interactive effects of UV-B radiation in a complex environment. Plant Physiology and Biochemistry, 2019, 134, 1-8.	5.8	35

#	Article	IF	CITATIONS
19	Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis. Photochemical and Photobiological Sciences, 2018, 17, 1108-1117.	2.9	23
20	Feeding transgenic plants that express a tolerogenic fusion protein effectively protects against arthritis. Plant Biotechnology Journal, 2016, 14, 1106-1115.	8.3	15
21	Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants. Protein Expression and Purification, 2016, 127, 61-67.	1.3	10
22	Protection against genital tract <i>Chlamydia trachomatis</i> infection following intranasal immunization with a novel recombinant <scp>MOMP VS</scp> 2/4 antigen. Apmis, 2016, 124, 1078-1086.	2.0	6
23	Evaluation of procedures for assessing anti- and pro-oxidants in plant samples. Analytical Methods, 2016, 8, 5569-5580.	2.7	5
24	Are solar UVâ€B―and UVâ€Aâ€dependent gene expression and metabolite accumulation in <i>Arabidopsis</i> mediated by the stress response regulator RADICALâ€INDUCED CELL DEATH1?. Plant, Cell and Environment, 2015, 38, 878-891.	5.7	11
25	Photochemical Reaction Mechanism of UV-B-Induced Monomerization of UVR8 Dimers as the First Signaling Event in UV-B-Regulated Gene Expression in Plants. Journal of Physical Chemistry B, 2014, 118, 951-965.	2.6	27
26	Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine, 2014, 32, 2288-2293.	3.8	28
27	Hydrogen peroxide contributes to the ultravioletâ€B (280–315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Letters, 2014, 588, 2255-2261.	2.8	47
28	Interactions and Stabilities of the UV RESISTANCE LOCUS8 (UVR8) Protein Dimer and Its Key Mutants. Journal of Chemical Information and Modeling, 2013, 53, 1736-1746.	5.4	8
29	Development of non-standard arginine residue parameters for use with the AMBER force fields. Chemical Physics Letters, 2013, 584, 188-194.	2.6	3
30	UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?. Trends in Plant Science, 2013, 18, 107-115.	8.8	522
31	Theoretical prediction of the protein–protein interaction between Arabidopsis thaliana COP1 and UVR8. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	8
32	Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation Â. Plant Physiology, 2013, 161, 744-759.	4.8	170
33	Homology Models of Human All-Trans Retinoic Acid Metabolizing Enzymes CYP26B1 and CYP26B1 Spliced Variant. Journal of Chemical Information and Modeling, 2012, 52, 2631-2637.	5.4	8
34	Oral delivery of transgenic plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to higher doses. Retrovirology, 2012, 9, P336.	2.0	1
35	Cloning and Functional Studies of a Splice Variant of CYP26B1 Expressed in Vascular Cells. PLoS ONE, 2012, 7, e36839.	2.5	9
36	UV responses of <i>Lolium perenne</i> raised along a latitudinal gradient across Europe: a filtration study. Physiologia Plantarum, 2012, 145, 604-618.	5.2	17

#	Article	IF	CITATIONS
37	Catalytic Roles of Active-Site Residues in 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase: An ONIOM/DFT Study. Journal of Physical Chemistry B, 2011, 115, 1918-1926.	2.6	22
38	Theoretical Study of Pyridoxine (Vitamin B6) Photolysis. Journal of Physical Chemistry A, 2011, 115, 13556-13563.	2.5	12
39	Computational Evidence for the Role of Arabidopsis thaliana UVR8 as UV–B Photoreceptor and Identification of Its Chromophore Amino Acids. Journal of Chemical Information and Modeling, 2011, 51, 1287-1295.	5.4	34
40	A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate. Protein Expression and Purification, 2011, 80, 194-202.	1.3	16
41	The role of the pyridoxine (vitamin B6) biosynthesis enzyme PDX1 in ultraviolet-B radiation responses in plants. Plant Physiology and Biochemistry, 2011, 49, 284-292.	5.8	36
42	The Pea SAD Short-Chain Dehydrogenase/Reductase: Quinone Reduction, Tissue Distribution, and Heterologous Expression Â. Plant Physiology, 2011, 155, 1839-1850.	4.8	8
43	Expression of <i>Helicobacter pylori</i> TonB Protein in Transgenic <i>Arabidopsis thaliana</i> : Toward Production of Vaccine Antigens in Plants. Helicobacter, 2010, 15, 430-437.	3.5	13
44	Hydroxylation and Ringâ€Opening Mechanism of an Unusual Flavoprotein Monooxygenase, 2â€Methylâ€3â€hydroxypyridineâ€5â€carboxylic Acid Oxygenase: A Theoretical Study. Chemistry - A European Journal, 2010, 16, 2557-2566.	3.3	10
45	Expression of Pisum sativum SAD polypeptides in production hosts and in planta: Tetrameric organization of the protein. Protein Expression and Purification, 2009, 63, 18-25.	1.3	3
46	Production of the p24 capsid protein from HIV-1 subtype C in Arabidopsis thaliana and Daucus carota using an endoplasmic reticulum-directing SEKDEL sequence in protein expression constructs. Protein Expression and Purification, 2009, 66, 46-51.	1.3	25
47	Evidence of High •OH Radical Quenching Efficiency by Vitamin <i>B</i> ₆ . Journal of Physical Chemistry B, 2009, 113, 9629-9632.	2.6	73
48	Crystal structure of a protein, structurally related to glycosyltransferases, encoded in the Rhodobacter blasticus atp operon. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 379-384.	2.3	4
49	Feeding of mice with <i>Arabidopsis thaliana</i> expressing the HIVâ€l subtype C p24 antigen gives rise to systemic immune responses. Apmis, 2008, 116, 985-994.	2.0	19
50	Two separate UV-B radiation wavelength regions control expression of different molecular markers in Arabidopsis thaliana. Functional Plant Biology, 2008, 35, 222.	2.1	34
51	Homology Models and Molecular Modeling of Human Retinoic Acid Metabolizing Enzymes Cytochrome P450 26A1 (CYP26A1) and P450 26B1 (CYP26B1). Journal of Chemical Theory and Computation, 2008, 4, 1021-1027.	5.3	16
52	Theoretical Study of the Reaction of Vitamin B6 with1O2. Chemistry - A European Journal, 2007, 13, 4636-4642.	3.3	41
53	pH-Dependent Electronic and Spectroscopic Properties of Pyridoxine (Vitamin B6). Journal of Physical Chemistry B, 2006, 110, 16774-16780.	2.6	37
54	Theoretical Study of the Antioxidant Properties of Pyridoxine. Journal of Physical Chemistry A, 2006, 110, 13068-13072.	2.5	77

#	Article	IF	CITATIONS
55	The role of NADPH oxidase and MAP kinase phosphatase in UV-B-dependent gene expression in Arabidopsis. Plant, Cell and Environment, 2006, 29, 1783-1793.	5.7	55
56	Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes*. Plant, Cell and Environment, 2006, 29, 754-763.	5.7	76
57	Ah Receptor Agonists in UV-exposed Toluene Solutions of Decabromodiphenyl Ether (decaBDE) and in Soils Contaminated with Polybrominated Diphenyl Ethers (PBDEs) (9 pp). Environmental Science and Pollution Research, 2006, 13, 161-169.	5.3	20
58	Anthocyanin accumulation and changes in CHS and PR-5 gene expression in Arabidopsis thaliana after removal of the inflorescence stem (decapitation). Plant Physiology and Biochemistry, 2005, 43, 521-525.	5.8	20
59	Non-enzymatic oxidation of NADH by quinones. Chemical Physics Letters, 2005, 414, 243-247.	2.6	13
60	Effects of UV-B in biological and chemical systems: Equipment for wavelength dependence determination. Journal of Proteomics, 2005, 65, 1-12.	2.4	5
61	Induction of early light-inducible protein gene expression in Pisum sativum after exposure to low levels of UV-B irradiation and other environmental stresses. Plant Cell Reports, 2004, 22, 532-536.	5.6	26
62	Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiology and Biochemistry, 2004, 42, 135-142.	5.8	28
63	Ultraviolet-B signalling: Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence gene expression. Plant Physiology and Biochemistry, 2004, 42, 687-694.	5.8	42
64	A Pisum sativum Glyoxysomal Malate Dehydrogenase Induced by Cadmium Exposure. DNA Sequence, 2004, 15, 206-208.	0.7	5
65	Molecular events following perception of ultraviolet-B radiation by plants. Physiologia Plantarum, 2003, 117, 1-10.	5.2	303
66	Regulation of Gene Expression by Low Levels of Ultraviolet-B Radiation in Pisum sativum: Isolation of Novel Genes by Suppression Subtractive Hybridisation. Plant and Cell Physiology, 2002, 43, 402-410.	3.1	33
67	Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochemical and Photobiological Sciences, 2002, 1, 656-664.	2.9	100
68	Identification of a novel nuclear factor-binding site in the Pisum sativum sad gene promoters. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 231-244.	2.4	9
69	Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (<i>Oryza sativa</i> L.) growing under supplementary UVâ€B radiation. Plant, Cell and Environment, 2002, 25, 695-706.	5.7	66
70	Gene Expression Under Environmental Stresses — Molecular Marker Analysis. , 2002, , 371-408.		4
71	UV-B-induced DNA damage and expression of defence genes under UV-B stress: tissue-specific molecular marker analysis in leaves. Plant, Cell and Environment, 2001, 24, 983-990.	5.7	45
72	Opportunities to genetically modify plants to cope with environmental stress. British Food Journal, 2001, 103, 796-800.	2.9	1

#	Article	IF	CITATIONS
73	Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant, Cell and Environment, 2000, 23, 689-700.	5.7	40
74	Ultraviolet-B Radiation Causes Tendril Coiling in Pisum sativum. Plant and Cell Physiology, 2000, 41, 1077-1079.	3.1	12
75	Cloning, Expression, and Molecular Characterization of a Small Pea Gene Family Regulated by Low Levels of Ultraviolet B Radiation and Other Stresses. Plant Physiology, 1999, 121, 479-488.	4.8	41
76	Transcriptional activation of the parsley chalcone synthase promoter in heterologous pea and yeast systems. Plant Physiology and Biochemistry, 1999, 37, 821-829.	5.8	2
77	The mRNA-binding ribosomal protein S26 as a molecular marker in plants: molecular cloning, sequencing and differential gene expression during environmental stress. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 342-344.	2.4	19
78	Molecular markers for UV-B stress in plants: alteration of the expression of four classes of genes in Pisum sativum and the formation of high molecular mass RNA adducts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1447, 185-198.	2.4	33
79	Occurrence, overexpression and partial purification of the protein (majastridin) corresponding to the Rhodobacter blasticus atp operon. FEBS Journal, 1998, 255, 87-92.	0.2	5
80	Low Doses of UV-B Radiation Cause Formation of a High Molecular Weight Adduct of the Chloroplastic 23S rRNA in Pisum sativum. , 1998, , 2353-2356.		1
81	Search for the atp Operon URF6 Gene in Rhodobacter sphaeroides and Paracoccus denitrificans and Partial Sequencing of the Corresponding atpD and atpC Genes. , 1998, , 1731-1734.		0
82	Ultraviolet-B-Radiation-Induced Changes in Nicotinamide and Glutathione Metabolism and Gene Expression in Plants. FEBS Journal, 1997, 249, 465-472.	0.2	68
83	A 3-hydroxy-3-methylglutaryl-CoA lyase gene in the photosynthetic bacterium Rhodospirillum rubrum. BBA - Proteins and Proteomics, 1997, 1337, 113-122.	2.1	10
84	Temperature-dependency of changes in the relaxation of electrochromic shifts, of chlorophyll fluorescence, and in the levels of mRNA trancripts in detached leaves from Pisum sativum exposed to supplementary UV-B radiation. Plant Science, 1996, 115, 199-206.	3.6	13
85	UV-B- and oxidative stress-induced increase in nicotinamide and trigonelline and inhibition of defensive metabolism induction by poly(ADP-ribose)polymerase inhibitor in plant tissue. FEBS Letters, 1996, 380, 188-193.	2.8	52
86	Changes in the Relaxation of Electrochromic Shifts of Photosynthetic Pigments and in the Levels of mRNA Transcripts in Leaves of Pisum sativum as a Result of Exposure to Supplementary UV-B Radiation. The Dependency on the Intensity of the Photosynthetically Active Radiation. Plant and Cell Physiology, 1996, 37, 61-67.	3.1	38
87	Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2'-azobis (2-amidinopropane) dihydrochloride. Physiologia Plantarum, 1996, 96, 6-12.	5.2	18
88	Alteration of gene expression in Pisum sativum tissue cultures caused by the free radical-generating agent 2,2'-azobis (2-amidinopropane) dihydrochloride. Physiologia Plantarum, 1996, 96, 6-12.	5.2	3
89	Modification of the Reactions of the Photobacterial ATP-Synthase by Alcohols and Antibiotic Compounds. , 1995, , 2131-2134.		0
90	UV-B damage and protection at the molecular level in plants. Photosynthesis Research, 1994, 39, 475-489.	2.9	369

#	Article	IF	CITATIONS
91	The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage. Plant, Cell and Environment, 1994, 17, 45-54.	5.7	139
92	The effects of ultraviolet-B radiation on the CF0F1-ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 295-302.	1.0	36
93	Effect of Nicotinamide on Gene Expression and Glutathione Levels in Tissue Cultures of Pisum sativum. Journal of Plant Physiology, 1993, 142, 676-684.	3.5	22
94	Nicotinamide Induces Defence-Related and/or Secondary Metabolism in Plant Tissue Cultures ofCatharanthus roseusandPisum sativum. Planta Medica, 1993, 59, A660-A661.	1.3	1
95	Amino Acid Sequence Similarities between the Vacuolar Proton-Pumping Inorganic Pyrophosphatase and the c-Subunit of F ₀ F ₁ -ATPases. Plant and Cell Physiology, 1993, , .	3.1	3
96	Amino acid sequence similarities between the vacuolar proton-pumping inorganic pyrophosphatase and the c-subunit of F0F1-ATPases. Plant and Cell Physiology, 1993, 34, 375-8.	3.1	6
97	Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic: pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution. Biochemistry, 1991, 30, 2883-2887.	2.5	75
98	Reduction incabandpsbA RNA transcripts in response to supplementary ultraviolet-B radiation. FEBS Letters, 1991, 284, 5-8.	2.8	95
99	Hypothesis: the physiological role of the membrane-bound proton-translocating pyrophosphatase in some phototrophic bacteria. FEMS Microbiology Letters, 1991, 77, 265-269.	1.8	1
100	Missing woman. Nature, 1990, 345, 286-286.	27.8	1
101	Photosynthetic formation of inorganic pyrophosphate in phototrophic bacteria. Photosynthesis Research, 1990, 24, 75-80.	2.9	14
102	Light-Driven Inorganic Pyrophosphate Synthesis in Phototrophic Bacteria. , 1990, , 1929-1934.		0
103	Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1020, 260-268.	1.0	240
104	Intrinsic Uncoupling of the FoF1-ATPase Dependent on what Divalent Cation is Used. , 1990, , 2083-2086.		0
105	The Purified F1-ATPase of Rhodopseudomonas blastica is a Ca++ -ATPase. , 1990, , 2087-2089.		0
106	Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores. FEBS Journal, 1989, 186, 333-337.	0.2	6
107	Division of divalent cations into two groups in relation to their effect on the coupling of the FOF1-ATPase of Rhodospirillum rubrum to the protonmotive force. Biochemistry, 1989, 28, 9718-9724.	2.5	10
108	The effect of equisetin on energy-linked reactions in Rhodospirillum rubrum chromatophores. Archives of Biochemistry and Biophysics, 1989, 268, 659-666.	3.0	9

#	Article	IF	CITATIONS
109	F1-ATPase from Rhodopseudomonas blastica Acta Chemica Scandinavica, 1989, 43, 1007-1008.	0.7	0
110	Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+ - and Mg2+ -dependent activities of the F1-ATPase from Rhodospirillum rubrum. FEBS Journal, 1988, 176, 281-285.	0.2	13
111	Conversion of coupling factor 1 of Rhodospirillum rubrum from a Ca2+-ATPase into a Mg2+-ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 935, 123-129.	1.0	12
112	Some characteristics of cyclic photophosphorylation in maize bundle sheath chloroplasts. Biochemical and Biophysical Research Communications, 1988, 151, 878-882.	2.1	4
113	Demonstration of î"pH- and î"ï-induced synthesis of inorganic pyrophosphate in chromatophores fromRhodospirillum rubrum. FEBS Letters, 1987, 224, 348-352.	2.8	12
114	Diethylstilbestrol is a potent inhibitor of the H+-PPase but not of the H+-ATPase of Rhodospirillum rubrum chromatophores. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 892, 236-244.	1.0	8
115	DeltapH- and DeltaPsi-Induced ATP and PPi Synthesis in Rhodospirillum rubrum Chromatophores Acta Chemica Scandinavica, 1987, 41b, 116-118.	0.7	5
116	Differences in Action of Oligomycin and Venturicidin on the H+-ATPase of Rhodospirillum rubrum Acta Chemica Scandinavica, 1987, 41b, 119-122.	0.7	3
117	Kinetics of the membrane-bound inorganic pyrophosphatase from Rhodospirillum rubrum chromatophores. FEBS Letters, 1986, 196, 337-340.	2.8	7
118	Kinetics of the H+ -ATPase in chromatophores from Rhodospirillum rubrum. FEBS Letters, 1985, 180, 314-316.	2.8	4